【大模型开发】微调开源大模型DeepSeek应用实例

开源大模型微调技术详解:以DeepSeek开源模型为例

随着大规模预训练模型(Large Language Model, LLM)的广泛应用,如何在已有的开源大模型基础上进行高效、低成本的微调,已成为工业与学术界关注的焦点。本文将首先对大模型的微调方法做系统介绍,然后以DeepSeek开源模型为例,给出微调过程的示例代码与详细解释,帮助读者理解并掌握微调关键技术。


一、大模型微调技术概述

1. 全量微调(Full Fine-tuning)

  • 定义:对预训练模型的全部参数进行训练,更新所有权重。
  • 特点
    • 对硬件及数据需求高;
    • 训练时间长,成本大;
    • 最终模型可以完全适配目标任务,表现通常更好。
  • 适用场景:数据量充足、对精度要求极高,且有足够算力的情况。

2. 参数高效微调(Parameter-Efficient Fine-tuning)

由于全量微调对资源需求过高,学术界和工业界提出了多种参数高效微调策略,让在相对有限资源下,也能充分挖掘大模型的能力。

  1. Adapter

    • 在模型的每个层之间插入一小段可训练的“适配器”模块,固定预训练模型原有参数,仅训练这些额外插入的层;
    • 额外训练参数量通常只占总量的很小一部分,资源占用显著下降。
  2. LoRA (Low-Rank Adaptation)

    • 利用矩阵低秩分解的思想,仅更新变换矩阵的一小部分低秩分量;
    • 无需在整个网络上插入适配器,代码改动小,训练速度快;
    • 已被广泛应用于ChatGPT等大型模型的指令微调(Instruction Tuning)。
  3. Prefix Tuning / P-Tuning

    • 在输入Embedding阶段,为模型加上可训练的“前缀向量”;
    • 无需改变模型结构,仅在输入端增加少量可学习参数即可完成迁移到下游任务。
  4. Prompt Tuning / Prompt Engineering

    • 不一定需要改动模型参数;
    • 通过在输入中构造合理的提示(Prompt),让模型针对不同任务给出更符合需求的输出;
    • 虽然简单但依赖经验,迭代试错成本高。

3. 指令微调(Instruction Tuning)

  • 目的:让模型学会遵循自然语言形式的“指令”进行回答,对话式模型或多任务场景尤为有效。
  • 方法:用成千上万条带有指令-答案对的数据进行训练或微调,模型逐渐学会理解并执行各种自然语言指令。

4. 人类反馈强化学习(RLHF)

  • 原理:结合人工评估数据(人类对模型输出的打分),通过强化学习调整模型参数,使得输出更贴近人类偏好;
  • 应用:ChatGPT、GPT-4等大模型大多使用了RLHF来显著提升对话质量与安全性。

二、DeepSeek开源模型微调案例

DeepSeek是近年快速崛起的开源AI平台,提供了多模态(CV + NLP)大模型及工具链,其NLP模型也具备与主流Transformer框架兼容的接口。以下将以“DeepSeek-LM”为例,演示如何使用参数高效微调技术(LoRA)在一个自然语言问答任务上完成微调。所示代码基于Hugging Face Transformerspeft库进行说明,供读者学习参考。

注意:以下示例采用的是通用的Hugging Face + PEFT工作流程,假设DeepSeek开源模型兼容该生态;实际操作中,请结合DeepSeek官方提供的文档或训练脚本进行调试。

1. 环境准备

# 建议使用Python 3.8+环境
pip install torch transformers datasets peft accelerate
  • torch:深度学习框架(Pytorch)
  • transformers:Hugging Face的Transformers库
  • datasets:用于加载与处理数据集
  • peft:Parameter-Efficient Fine-Tuning库
  • accelerate:多GPU加速工具

2. 数据准备

此处以一个简化的指令问答任务为例。假设我们有一个JSON或CSV数据文件,其中包含指令(instruction)与期望输出(response),类似下表所示:

instructionresponse
用一句话描述人工智能的核心人工智能是通过模拟或超越人类智能来解决复杂任务的技术。
请总结一下区块链技术的特点去中心化、不可篡改、可追溯是区块链的三个主要特点。
如何提高神经网络的泛化性能?通常通过数据增广、正则化和合适的网络结构设计来提高泛化性能。

可以使用datasets库来加载本地文件,也可以直接加载现有的公开数据集。下面以本地JSON文件为例:

from datasets import load_dataset

dataset = load_dataset('json', data_files={
    'train': 'train_data.json',
    'validation': 'val_data.json'
})

# 打印一些样本
print(dataset['train'][0])

3. 加载DeepSeek-LM模型与Tokenizer

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name_or_path = "DeepSeek/DeepSeek-LM"  # 假设DeepSeek开源模型在Hugging Face上可直接下载
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)

如果DeepSeek模型并未发布在Hugging Face仓库,需要自行下载或通过DeepSeek官方提供的方式加载,保证返回的模型结构兼容Transformer即可。

4. 使用LoRA进行参数高效微调

PEFT(Parameter-Efficient Fine-Tuning)库提供了LoRA、Prefix Tuning等多种微调方法。此处以LoRA为例,示例代码如下:

from peft import LoraConfig, TaskType, get_peft_model

# Step 1: 设置LoRA超参数
lora_config = LoraConfig(
    r=8,                       # LoRA秩
    lora_alpha=32,            # LoRA缩放系数
    lora_dropout=0.05,        # Dropout
    bias="none",              # 是否使用bias
    task_type=TaskType.CAUSAL_LM  # 因果语言建模场景
)

# Step 2: 将LoRA配置附加到模型上
model = get_peft_model(model, lora_config)

# 检查LoRA注入的可训练参数
model.print_trainable_parameters()

此时,模型的可训练参数仅为LoRA相关的部分,大大减少了训练所需的显存与计算量。

5. 数据处理与分批(Collation)

我们需要将instructionresponse拼接成模型的输入。对因果语言模型而言,常见做法是:

  • 将“指令 + 分隔符 + 回复”当做模型的输入序列;
  • 模型预测该序列每个Token的概率;
  • 只计算回复部分的loss,避免对指令文字进行损失回传。

示例代码:

def format_example(example, tokenizer, max_length=128):
    prompt = f"指令:{example['instruction']}\n答复:"
    target = example['response']
    
    # 将prompt与target拼接在一起
    input_text = prompt + target

    # 进行分词
    encoding = tokenizer(
        input_text,
        truncation=True,
        max_length=max_length,
        padding="max_length"
    )

    # 我们需要制作一个label,只对“答复”部分计算loss
    # 首先找到“答复”的起始位置
    answer_start_index = len(tokenizer(prompt)['input_ids']) - 1  # -1因为末尾有个token可能是eos或\n

    # label与input_ids相同,但对于指令部分要mask为-100
    labels = encoding["input_ids"].copy()
    for i in range(answer_start_index):
        labels[i] = -100  # 指令部分不计算损失
    
    encoding["labels"] = labels
    return encoding

def preprocess_data(examples):
    return format_example(examples, tokenizer)

train_dataset = dataset["train"].map(preprocess_data, batched=False)
val_dataset = dataset["validation"].map(preprocess_data, batched=False)

train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])

6. 训练配置与启动微调

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir="./ds_lora_finetuned",
    evaluation_strategy="steps",
    save_strategy="steps",
    logging_steps=50,
    eval_steps=200,
    save_steps=200,
    num_train_epochs=3,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    learning_rate=2e-4,
    warmup_steps=100,
    fp16=True,                # 如果GPU支持混合精度,可加速训练
    report_to="none",         # 不向WandB等平台报告
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=val_dataset
)

trainer.train()

7. 保存微调后模型

微调完成后,会在output_dir生成一系列检查点。LoRA微调的特点是只保存LoRA权重而非整个基础模型权重,可以再结合基础模型进行推理。示例:

trainer.save_model("./ds_lora_finetuned/checkpoint-final")

# 推理时,可以加载:
# 1. 基础模型
# 2. LoRA权重

三、关键步骤与原理解释

  1. LoRA原理

    • 将原始模型中的权重矩阵W分解为W + BA,其中BA是低秩矩阵,可训练的参数仅限于BA
    • 在推理时,会将这部分低秩矩阵叠加回原模型权重中;
    • 相比于训练W的全部参数,可训练参数量大幅下降。
  2. 为什么要单独mask指令部分?

    • 在因果语言模型场景下,如果我们想要训练模型更好地生成回答,则只需对答案部分计算损失,避免模型在“复制指令”时额外增加loss。
    • 这种做法也能促使模型将输入指令视为上下文提示,学习到更合理的回答策略。
  3. 评估与调优

    • 使用eval_dataset可以实时观察模型在验证集上的损失变化;
    • 若验证集任务目标是回答质量,可进一步用BLEU、ROUGE、BERTScore等指标评测,也可人工抽样评价。
  4. 扩展到其他微调方法

    • 可以将LoRA替换为Prefix TuningAdapter等模式,只需在peft库中切换对应的task_type和配置;
    • 对于对话场景,可以考虑结合指令微调(Instruction Tuning)人类反馈强化学习(RLHF),提升模型响应的可控性与安全性。

四、总结与展望

  1. 微调方式多元化

    • 从全量微调到参数高效微调,再到指令微调、RLHF,各种技术路径在目标任务与资源限制不同的前提下,各有取舍。
    • 结合实际需求选择合适的微调策略,可以在保障模型质量的同时,显著降低硬件与时间成本。
  2. DeepSeek开源模型价值

    • DeepSeek的开源策略与对边缘部署、跨模态处理的优化,使得中小型企业和个人开发者也能接入强大的NLP能力。
    • 在此基础上进行LoRA等参数高效微调,对定制化业务场景尤为友好。
  3. 未来趋势

    • 多模态融合:将LoRA或Adapter机制扩展到图像、语音等模态,提升跨模态任务的适用性。
    • 训练与推理优化:硬件加速、量化(Quantization)、剪枝(Pruning)等手段将进一步减少显存占用与推理延时。
    • 可持续AI:更少的能耗、更低碳的算力成为AI落地的重要衡量指标;参数高效微调切中了这一需求。

总之,通过对大模型微调技术的系统介绍和对DeepSeek开源模型微调示例的实际演示,可以看到:合适的微调方案不仅能在短期内完成对模型的快速定制,也能大幅降低开发成本。随着开源社区的日益壮大,微调技术将持续迭代,为各行各业的AI应用提供更多可能性。

哈佛博后带小白玩转机器学习哔哩哔哩_bilibili

总课时超400+,时长75+小时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值