本文参考自Rajesh Rajamani的《Vehicle Dynamics and Control》加入了一些忽略的推导步骤。
车辆横向运动学模型
如下图所示为自行车模型。
存在假设:前轮和后轮的运动方向都是沿着轮胎旋转方向,也就是轮胎的slip angle是0。在低速(<5m/s)时,这个假设是合理的。
从几何关系进行推导:
在三角形OCA中,根据正弦定理有:
sin
(
δ
f
−
β
)
l
f
=
sin
(
π
2
−
δ
f
)
R
(1)
\frac{\sin(\delta_f-\beta)}{l_f} = \frac{\sin(\frac{\pi}{2}-\delta_f)}{R} \tag{1}
lfsin(δf−β)=Rsin(2π−δf)(1)
同理在三角形OCB中,有:
sin
(
β
−
δ
r
)
l
r
=
sin
(
π
2
+
δ
r
)
R
(2)
\frac{\sin(\beta-\delta_r)}{l_r} = \frac{\sin(\frac{\pi}{2}+\delta_r)}{R} \tag{2}
lrsin(β−δr)=Rsin(2π+δr)(2)
将式(1)(2)三角函数展开得到:
sin
(
δ
f
)
cos
(
β
)
−
sin
(
β
)
cos
(
δ
f
)
l
f
=
cos
(
δ
f
)
R
(3)
\frac{\sin(\delta_f)\cos(\beta)-\sin(\beta)\cos(\delta_f)}{l_f} = \frac{\cos(\delta_f)}{R} \tag{3}
lfsin(δf)cos(β)−sin(β)cos(δf)=Rcos(δf)(3)
cos
(
δ
r
)
sin
(
β
)
−
cos
(
β
)
sin
(
δ
r
)
l
r
=
cos
(
δ
r
)
R
(4)
\frac{\cos(\delta_r)\sin(\beta)-\cos(\beta)\sin(\delta_r)}{l_r} = \frac{\cos(\delta_r)}{R} \tag{4}
lrcos(δr)sin(β)−cos(β)sin(δr)=Rcos(δr)(4)
在本模型假设下,在车辆行驶的任何一个瞬间,质心侧偏角,转向半径,以及前后轮转角及车辆几何参数都满足上述几何关系。
对等式(3)进行化简,可得:
tan
(
δ
f
)
cos
(
β
)
−
sin
(
β
)
=
l
f
R
(5)
\tan(\delta_f)\cos(\beta)-\sin(\beta)=\frac{l_f}{R} \tag{5}
tan(δf)cos(β)−sin(β)=Rlf(5)
sin
(
β
)
−
tan
(
δ
r
)
cos
(
β
)
=
l
r
R
(6)
\sin(\beta)-\tan(\delta_r)\cos(\beta) = \frac{l_r}{R} \tag{6}
sin(β)−tan(δr)cos(β)=Rlr(6)
将等式(5)(6)相加,可得:
(
tan
(
δ
f
)
−
tan
(
δ
r
)
)
cos
(
β
)
=
l
f
+
l
r
R
(7)
(\tan(\delta_f)-\tan(\delta_r))\cos(\beta)=\frac{l_f+l_r}{R} \tag{7}
(tan(δf)−tan(δr))cos(β)=Rlf+lr(7)
在低速下有:
ψ
˙
=
V
R
(8)
\dot{\psi}=\frac{V}{R} \tag{8}
ψ˙=RV(8)
将(8)代入(7)可得车辆横摆角速度:
ψ
˙
=
V
cos
(
β
)
l
f
+
l
r
(
tan
(
δ
f
)
−
tan
(
δ
r
)
)
(9)
\dot{\psi}=\frac{V\cos(\beta)}{l_f+l_r} (\tan(\delta_f)-\tan(\delta_r)) \tag{9}
ψ˙=lf+lrVcos(β)(tan(δf)−tan(δr))(9)
将式(5)(6)变换为:
tan
(
δ
f
)
cos
(
β
)
−
sin
(
β
)
l
f
=
1
/
R
(10)
\frac{\tan(\delta_f)\cos(\beta)-\sin(\beta)}{l_f} = 1/R \tag{10}
lftan(δf)cos(β)−sin(β)=1/R(10)
sin
(
β
)
−
tan
(
δ
r
)
cos
(
β
)
l
r
=
1
/
R
(11)
\frac{\sin(\beta)-\tan(\delta_r)\cos(\beta)}{l_r} = 1/R \tag{11}
lrsin(β)−tan(δr)cos(β)=1/R(11)
将式(10)(11)相减得:
l
r
tan
(
δ
f
)
cos
(
β
)
−
l
r
sin
(
β
)
=
l
f
sin
(
β
)
−
l
f
tan
(
δ
r
)
cos
(
β
)
(12)
l_r\tan(\delta_f)\cos(\beta)-l_r\sin(\beta)=l_f\sin(\beta)-l_f\tan(\delta_r)\cos(\beta) \tag{12}
lrtan(δf)cos(β)−lrsin(β)=lfsin(β)−lftan(δr)cos(β)(12)
进一步化简可得:
β
=
tan
−
1
(
l
f
tan
δ
r
+
l
r
tan
δ
f
l
f
+
l
r
)
(13)
\beta=\tan^{-1}(\frac{l_f\tan\delta_r+l_r\tan\delta_f}{l_f+l_r}) \tag{13}
β=tan−1(lf+lrlftanδr+lrtanδf)(13)
从式(13)可以看出:
(1)在质心侧偏角受车辆几何参数以及前后轮转向角的影响。当给定车辆几何参数以及前后轮转向角,就可以唯一的确定质心侧偏角。
(2)这里“质心”其实也是几何上的概念,并不是真正的“质心”。从上图中可以看出,我们其实可以选取空间中任何一点,对这一点进行解三角形,进而获得该点的运动速度方向,也就是“质心侧偏角”。
(3)如果将求解的点放到后轴中心,可以发现在后轴上是没有侧偏角的;如果将求解的点放在前轴中心,则侧片角就是前轮转角,这一点和假设一致。
车辆横向动力学模型
在高速情况下,“每一个车轮的车速是沿车轮方向”这个假设不再成立。因此考虑引入动态模型。
考虑二自由度车辆模型:这里的二自由度是指车辆的横向位置和车辆在大地坐标系下的方向角。
考虑
y
y
y方向的运动,有:
m
a
y
=
F
y
f
+
F
y
r
(14)
ma_y=F_{yf}+F_{yr} \tag{14}
may=Fyf+Fyr(14)
考虑
y
y
y方向的加速度:
a
y
=
y
¨
+
V
x
ψ
˙
(15)
a_y = \ddot{y}+V_x\dot{\psi} \tag{15}
ay=y¨+Vxψ˙(15)
将公式(15)代入公式(14)得:
m
(
y
¨
+
ψ
˙
V
x
)
=
F
y
f
+
F
y
r
(16)
m(\ddot{y}+\dot{\psi}V_x)=F_{yf}+F_{yr} \tag{16}
m(y¨+ψ˙Vx)=Fyf+Fyr(16)
考虑绕z轴旋转方向:
I
z
ψ
¨
=
l
f
F
y
f
−
l
f
F
y
r
(16.1)
I_z\ddot{\psi}=l_fF_{yf}-l_fF_{yr} \tag{16.1}
Izψ¨=lfFyf−lfFyr(16.1)
为了进一步描述轮胎所受的侧向力,如上图所示引入轮胎侧偏角概念:
α
f
=
δ
−
θ
V
f
(17)
\alpha_f = \delta-\theta_{Vf} \tag{17}
αf=δ−θVf(17)
对于后轮:
α
r
=
−
θ
V
f
(18)
\alpha_r = -\theta_{Vf} \tag{18}
αr=−θVf(18)
由于轮胎所受侧向力和轮胎侧偏角成正比,有:
F
y
f
=
2
C
α
f
(
δ
−
θ
V
f
)
(19)
F_{yf}=2C_{\alpha f}(\delta-\theta_{Vf}) \tag{19}
Fyf=2Cαf(δ−θVf)(19)
其中,
C
α
f
C_{\alpha f}
Cαf为轮胎侧偏刚度,2表示有两个轮子!!
同样的,后轮侧向力表达为:
F
y
r
=
2
C
α
r
(
−
θ
V
r
)
(20)
F_{yr}=2C_{\alpha r}(-\theta_{Vr}) \tag{20}
Fyr=2Cαr(−θVr)(20)
下面求
θ
V
f
\theta_{Vf}
θVf和
θ
V
r
\theta_{Vr}
θVr:
tan
(
θ
V
f
)
=
V
y
+
l
f
ψ
˙
V
x
(21)
\tan(\theta_{Vf})=\frac{V_y+l_f\dot{\psi}}{V_x} \tag{21}
tan(θVf)=VxVy+lfψ˙(21)
tan
(
θ
V
r
)
=
V
y
−
l
r
ψ
˙
V
x
(22)
\tan(\theta_{Vr})=\frac{V_y-l_r\dot{\psi}}{V_x} \tag{22}
tan(θVr)=VxVy−lrψ˙(22)
利用小角度线性的假设:
θ
V
f
=
y
˙
+
l
f
ψ
˙
V
x
(23)
\theta_{Vf}=\frac{\dot{y}+l_f\dot{\psi}}{V_x} \tag{23}
θVf=Vxy˙+lfψ˙(23)
θ
V
r
=
y
˙
−
l
r
ψ
˙
V
x
(24)
\theta_{Vr}=\frac{\dot{y}-l_r\dot{\psi}}{V_x} \tag{24}
θVr=Vxy˙−lrψ˙(24)
这里,对式(23)(24)进行变换,可得:
θ
V
f
=
β
+
l
f
ψ
˙
V
x
(24.1)
\theta_{Vf}=\beta+\frac{l_f\dot{\psi}}{V_x} \tag{24.1}
θVf=β+Vxlfψ˙(24.1)
θ
V
r
=
β
−
l
r
ψ
˙
V
x
(24.2)
\theta_{Vr}=\beta-\frac{l_r\dot{\psi}}{V_x} \tag{24.2}
θVr=β−Vxlrψ˙(24.2)
上述两个表达式将前轮和后轮速度与质心侧偏角关联起来,后文推导质心侧偏角时有用。
将式(17)至式(24)代入式(16)并整理,可以得到状态空间方程:
关于偏差的动力学模型表达
在控制车辆运动的时候主要是消除车辆和目标线的偏差,因此考虑偏差的动力学方程,引入误差状态量
e
1
e_1
e1: 车辆质心到道路中心线的距离(这里应该就是指最短的距离)
e
2
e_2
e2: 车辆的方向和道路方向的偏差(这里应当具体参考frenet坐标,感觉描述的并不是很准确)
考虑纵向车速
V
x
V_x
Vx,车道半径
R
R
R,期望的车辆横摆角速度为:
ψ
˙
=
V
x
R
(26)
\dot{\psi}=\frac{V_x}{R} \tag{26}
ψ˙=RVx(26)
期望的车辆横向加速度为:
V
x
2
R
=
V
x
ψ
˙
(27)
\frac{V_x^2}{R}=V_x \dot{\psi} \tag{27}
RVx2=Vxψ˙(27)
将
e
1
¨
\ddot{e_1}
e1¨和
e
2
e_2
e2定义如下:
e
1
¨
=
(
y
¨
+
V
x
ψ
˙
)
−
V
x
2
R
=
y
¨
+
V
x
(
ψ
˙
−
ψ
˙
d
e
s
)
(28)
\ddot{e_1}=(\ddot{y}+V_x \dot{\psi}) - \frac{V_x^2}{R} = \ddot{y}+V_x (\dot{\psi}-\dot{\psi}_{des}) \tag{28}
e1¨=(y¨+Vxψ˙)−RVx2=y¨+Vx(ψ˙−ψ˙des)(28)
e
2
=
ψ
−
ψ
d
e
s
(29)
e_2=\psi-\psi_{des} \tag{29}
e2=ψ−ψdes(29)
其中
e
1
¨
\ddot{e_1}
e1¨是用车辆当前的横向加速度,减去期望的车辆横向加速度。
将
e
1
¨
\ddot{e_1}
e1¨进行积分得到:
e
˙
1
=
y
˙
+
V
x
(
ψ
−
ψ
d
e
s
)
(30)
\dot{e}_1=\dot{y}+V_x(\psi-\psi_{des}) \tag{30}
e˙1=y˙+Vx(ψ−ψdes)(30)
e
1
e_1
e1的表达式在这里并没有用到,
e
˙
2
=
ψ
˙
−
ψ
˙
d
e
s
\dot{e}_2=\dot{\psi}-\dot{\psi}_{des}
e˙2=ψ˙−ψ˙des,并且
e
¨
2
=
ψ
¨
−
0
\ddot{e}_2=\ddot{\psi}-0
e¨2=ψ¨−0
将上述式子代入公式(16)和(16.1)中进行化简,可得:
写成状态空间方程:
横摆角速度和质心侧偏角表达的动力学方程
依照上图标注,有:
β
=
y
˙
V
x
,
d
β
d
t
=
y
¨
V
x
\beta=\frac{\dot{y}}{V_x}, \frac{d\beta}{dt}=\frac{\ddot{y}}{V_x}
β=Vxy˙,dtdβ=Vxy¨
上式将车辆横向加速度与质心侧偏角的导数进行了关联,下面考虑将侧向力与质心侧偏角进行关联,利用上文公式(24.1)与(24.2)有:
F
y
f
=
C
α
f
α
f
,
α
f
=
δ
−
θ
V
f
=
δ
−
β
−
l
f
ψ
˙
V
x
F_{yf}=C_{\alpha f}\alpha_f, \alpha_f=\delta-\theta_{Vf}=\delta-\beta-\frac{l_f \dot{\psi}}{V_x}
Fyf=Cαfαf,αf=δ−θVf=δ−β−Vxlfψ˙
F
y
r
=
C
α
r
α
r
,
α
r
=
−
θ
V
r
=
−
β
+
l
r
ψ
˙
V
x
F_{yr}=C_{\alpha r}\alpha_r, \alpha_r=-\theta_{Vr}=-\beta+\frac{l_r\dot{\psi}}{V_x}
Fyr=Cαrαr,αr=−θVr=−β+Vxlrψ˙
再结合式(16)(16.1)可以求出以横摆角速度和质心侧偏角为状态量的状态方程。如下