车辆横向控制——车辆横向运动学/动力学模型

本文参考自Rajesh Rajamani的《Vehicle Dynamics and Control》加入了一些忽略的推导步骤。

车辆横向运动学模型

如下图所示为自行车模型。
存在假设:前轮和后轮的运动方向都是沿着轮胎旋转方向,也就是轮胎的slip angle是0。在低速(<5m/s)时,这个假设是合理的。

从几何关系进行推导:
在三角形OCA中,根据正弦定理有:
sin ⁡ ( δ f − β ) l f = sin ⁡ ( π 2 − δ f ) R (1) \frac{\sin(\delta_f-\beta)}{l_f} = \frac{\sin(\frac{\pi}{2}-\delta_f)}{R} \tag{1} lfsin(δfβ)=Rsin(2πδf)(1)
同理在三角形OCB中,有:
sin ⁡ ( β − δ r ) l r = sin ⁡ ( π 2 + δ r ) R (2) \frac{\sin(\beta-\delta_r)}{l_r} = \frac{\sin(\frac{\pi}{2}+\delta_r)}{R} \tag{2} lrsin(βδr)=Rsin(2π+δr)(2)

将式(1)(2)三角函数展开得到:
sin ⁡ ( δ f ) cos ⁡ ( β ) − sin ⁡ ( β ) cos ⁡ ( δ f ) l f = cos ⁡ ( δ f ) R (3) \frac{\sin(\delta_f)\cos(\beta)-\sin(\beta)\cos(\delta_f)}{l_f} = \frac{\cos(\delta_f)}{R} \tag{3} lfsin(δf)cos(β)sin(β)cos(δf)=Rcos(δf)(3)
cos ⁡ ( δ r ) sin ⁡ ( β ) − cos ⁡ ( β ) sin ⁡ ( δ r ) l r = cos ⁡ ( δ r ) R (4) \frac{\cos(\delta_r)\sin(\beta)-\cos(\beta)\sin(\delta_r)}{l_r} = \frac{\cos(\delta_r)}{R} \tag{4} lrcos(δr)sin(β)cos(β)sin(δr)=Rcos(δr)(4)

在本模型假设下,在车辆行驶的任何一个瞬间,质心侧偏角,转向半径,以及前后轮转角及车辆几何参数都满足上述几何关系。

对等式(3)进行化简,可得:
tan ⁡ ( δ f ) cos ⁡ ( β ) − sin ⁡ ( β ) = l f R (5) \tan(\delta_f)\cos(\beta)-\sin(\beta)=\frac{l_f}{R} \tag{5} tan(δf)cos(β)sin(β)=Rlf(5)
sin ⁡ ( β ) − tan ⁡ ( δ r ) cos ⁡ ( β ) = l r R (6) \sin(\beta)-\tan(\delta_r)\cos(\beta) = \frac{l_r}{R} \tag{6} sin(β)tan(δr)cos(β)=Rlr(6)

将等式(5)(6)相加,可得:
( tan ⁡ ( δ f ) − tan ⁡ ( δ r ) ) cos ⁡ ( β ) = l f + l r R (7) (\tan(\delta_f)-\tan(\delta_r))\cos(\beta)=\frac{l_f+l_r}{R} \tag{7} (tan(δf)tan(δr))cos(β)=Rlf+lr(7)
在低速下有:
ψ ˙ = V R (8) \dot{\psi}=\frac{V}{R} \tag{8} ψ˙=RV(8)
将(8)代入(7)可得车辆横摆角速度:
ψ ˙ = V cos ⁡ ( β ) l f + l r ( tan ⁡ ( δ f ) − tan ⁡ ( δ r ) ) (9) \dot{\psi}=\frac{V\cos(\beta)}{l_f+l_r} (\tan(\delta_f)-\tan(\delta_r)) \tag{9} ψ˙=lf+lrVcos(β)(tan(δf)tan(δr))(9)
在这里插入图片描述
将式(5)(6)变换为:
tan ⁡ ( δ f ) cos ⁡ ( β ) − sin ⁡ ( β ) l f = 1 / R (10) \frac{\tan(\delta_f)\cos(\beta)-\sin(\beta)}{l_f} = 1/R \tag{10} lftan(δf)cos(β)sin(β)=1/R(10)
sin ⁡ ( β ) − tan ⁡ ( δ r ) cos ⁡ ( β ) l r = 1 / R (11) \frac{\sin(\beta)-\tan(\delta_r)\cos(\beta)}{l_r} = 1/R \tag{11} lrsin(β)tan(δr)cos(β)=1/R(11)
将式(10)(11)相减得:
l r tan ⁡ ( δ f ) cos ⁡ ( β ) − l r sin ⁡ ( β ) = l f sin ⁡ ( β ) − l f tan ⁡ ( δ r ) cos ⁡ ( β ) (12) l_r\tan(\delta_f)\cos(\beta)-l_r\sin(\beta)=l_f\sin(\beta)-l_f\tan(\delta_r)\cos(\beta) \tag{12} lrtan(δf)cos(β)lrsin(β)=lfsin(β)lftan(δr)cos(β)(12)
进一步化简可得:
β = tan ⁡ − 1 ( l f tan ⁡ δ r + l r tan ⁡ δ f l f + l r ) (13) \beta=\tan^{-1}(\frac{l_f\tan\delta_r+l_r\tan\delta_f}{l_f+l_r}) \tag{13} β=tan1(lf+lrlftanδr+lrtanδf)(13)
从式(13)可以看出:
(1)在质心侧偏角受车辆几何参数以及前后轮转向角的影响。当给定车辆几何参数以及前后轮转向角,就可以唯一的确定质心侧偏角。
(2)这里“质心”其实也是几何上的概念,并不是真正的“质心”。从上图中可以看出,我们其实可以选取空间中任何一点,对这一点进行解三角形,进而获得该点的运动速度方向,也就是“质心侧偏角”。
(3)如果将求解的点放到后轴中心,可以发现在后轴上是没有侧偏角的;如果将求解的点放在前轴中心,则侧片角就是前轮转角,这一点和假设一致。

车辆横向动力学模型

在高速情况下,“每一个车轮的车速是沿车轮方向”这个假设不再成立。因此考虑引入动态模型。
考虑二自由度车辆模型:这里的二自由度是指车辆的横向位置和车辆在大地坐标系下的方向角。
在这里插入图片描述

考虑 y y y方向的运动,有:
m a y = F y f + F y r (14) ma_y=F_{yf}+F_{yr} \tag{14} may=Fyf+Fyr(14)

考虑 y y y方向的加速度:
a y = y ¨ + V x ψ ˙ (15) a_y = \ddot{y}+V_x\dot{\psi} \tag{15} ay=y¨+Vxψ˙(15)
将公式(15)代入公式(14)得:
m ( y ¨ + ψ ˙ V x ) = F y f + F y r (16) m(\ddot{y}+\dot{\psi}V_x)=F_{yf}+F_{yr} \tag{16} m(y¨+ψ˙Vx)=Fyf+Fyr(16)
考虑绕z轴旋转方向:
I z ψ ¨ = l f F y f − l f F y r (16.1) I_z\ddot{\psi}=l_fF_{yf}-l_fF_{yr} \tag{16.1} Izψ¨=lfFyflfFyr(16.1)

在这里插入图片描述
为了进一步描述轮胎所受的侧向力,如上图所示引入轮胎侧偏角概念:
α f = δ − θ V f (17) \alpha_f = \delta-\theta_{Vf} \tag{17} αf=δθVf(17)
对于后轮:
α r = − θ V f (18) \alpha_r = -\theta_{Vf} \tag{18} αr=θVf(18)

由于轮胎所受侧向力和轮胎侧偏角成正比,有:
F y f = 2 C α f ( δ − θ V f ) (19) F_{yf}=2C_{\alpha f}(\delta-\theta_{Vf}) \tag{19} Fyf=2Cαf(δθVf)(19)
其中, C α f C_{\alpha f} Cαf为轮胎侧偏刚度,2表示有两个轮子!!
同样的,后轮侧向力表达为:
F y r = 2 C α r ( − θ V r ) (20) F_{yr}=2C_{\alpha r}(-\theta_{Vr}) \tag{20} Fyr=2Cαr(θVr)(20)
下面求 θ V f \theta_{Vf} θVf θ V r \theta_{Vr} θVr
tan ⁡ ( θ V f ) = V y + l f ψ ˙ V x (21) \tan(\theta_{Vf})=\frac{V_y+l_f\dot{\psi}}{V_x} \tag{21} tan(θVf)=VxVy+lfψ˙(21)

tan ⁡ ( θ V r ) = V y − l r ψ ˙ V x (22) \tan(\theta_{Vr})=\frac{V_y-l_r\dot{\psi}}{V_x} \tag{22} tan(θVr)=VxVylrψ˙(22)
利用小角度线性的假设:
θ V f = y ˙ + l f ψ ˙ V x (23) \theta_{Vf}=\frac{\dot{y}+l_f\dot{\psi}}{V_x} \tag{23} θVf=Vxy˙+lfψ˙(23)
θ V r = y ˙ − l r ψ ˙ V x (24) \theta_{Vr}=\frac{\dot{y}-l_r\dot{\psi}}{V_x} \tag{24} θVr=Vxy˙lrψ˙(24)

这里,对式(23)(24)进行变换,可得:
θ V f = β + l f ψ ˙ V x (24.1) \theta_{Vf}=\beta+\frac{l_f\dot{\psi}}{V_x} \tag{24.1} θVf=β+Vxlfψ˙(24.1)
θ V r = β − l r ψ ˙ V x (24.2) \theta_{Vr}=\beta-\frac{l_r\dot{\psi}}{V_x} \tag{24.2} θVr=βVxlrψ˙(24.2)
上述两个表达式将前轮和后轮速度与质心侧偏角关联起来,后文推导质心侧偏角时有用。

将式(17)至式(24)代入式(16)并整理,可以得到状态空间方程:
在这里插入图片描述

关于偏差的动力学模型表达

在控制车辆运动的时候主要是消除车辆和目标线的偏差,因此考虑偏差的动力学方程,引入误差状态量
e 1 e_1 e1: 车辆质心到道路中心线的距离(这里应该就是指最短的距离)
e 2 e_2 e2: 车辆的方向和道路方向的偏差(这里应当具体参考frenet坐标,感觉描述的并不是很准确)
考虑纵向车速 V x V_x Vx,车道半径 R R R,期望的车辆横摆角速度为:
ψ ˙ = V x R (26) \dot{\psi}=\frac{V_x}{R} \tag{26} ψ˙=RVx(26)
期望的车辆横向加速度为:
V x 2 R = V x ψ ˙ (27) \frac{V_x^2}{R}=V_x \dot{\psi} \tag{27} RVx2=Vxψ˙(27)
e 1 ¨ \ddot{e_1} e1¨ e 2 e_2 e2定义如下:
e 1 ¨ = ( y ¨ + V x ψ ˙ ) − V x 2 R = y ¨ + V x ( ψ ˙ − ψ ˙ d e s ) (28) \ddot{e_1}=(\ddot{y}+V_x \dot{\psi}) - \frac{V_x^2}{R} = \ddot{y}+V_x (\dot{\psi}-\dot{\psi}_{des}) \tag{28} e1¨=(y¨+Vxψ˙)RVx2=y¨+Vx(ψ˙ψ˙des)(28)
e 2 = ψ − ψ d e s (29) e_2=\psi-\psi_{des} \tag{29} e2=ψψdes(29)
其中 e 1 ¨ \ddot{e_1} e1¨是用车辆当前的横向加速度,减去期望的车辆横向加速度。
e 1 ¨ \ddot{e_1} e1¨进行积分得到:
e ˙ 1 = y ˙ + V x ( ψ − ψ d e s ) (30) \dot{e}_1=\dot{y}+V_x(\psi-\psi_{des}) \tag{30} e˙1=y˙+Vx(ψψdes)(30)
e 1 e_1 e1的表达式在这里并没有用到, e ˙ 2 = ψ ˙ − ψ ˙ d e s \dot{e}_2=\dot{\psi}-\dot{\psi}_{des} e˙2=ψ˙ψ˙des,并且 e ¨ 2 = ψ ¨ − 0 \ddot{e}_2=\ddot{\psi}-0 e¨2=ψ¨0
将上述式子代入公式(16)和(16.1)中进行化简,可得:
在这里插入图片描述
在这里插入图片描述
写成状态空间方程:
在这里插入图片描述
在这里插入图片描述

横摆角速度和质心侧偏角表达的动力学方程

在这里插入图片描述
依照上图标注,有:
β = y ˙ V x , d β d t = y ¨ V x \beta=\frac{\dot{y}}{V_x}, \frac{d\beta}{dt}=\frac{\ddot{y}}{V_x} β=Vxy˙,dtdβ=Vxy¨
上式将车辆横向加速度与质心侧偏角的导数进行了关联,下面考虑将侧向力与质心侧偏角进行关联,利用上文公式(24.1)与(24.2)有:
F y f = C α f α f , α f = δ − θ V f = δ − β − l f ψ ˙ V x F_{yf}=C_{\alpha f}\alpha_f, \alpha_f=\delta-\theta_{Vf}=\delta-\beta-\frac{l_f \dot{\psi}}{V_x} Fyf=Cαfαf,αf=δθVf=δβVxlfψ˙
F y r = C α r α r , α r = − θ V r = − β + l r ψ ˙ V x F_{yr}=C_{\alpha r}\alpha_r, \alpha_r=-\theta_{Vr}=-\beta+\frac{l_r\dot{\psi}}{V_x} Fyr=Cαrαr,αr=θVr=β+Vxlrψ˙
再结合式(16)(16.1)可以求出以横摆角速度和质心侧偏角为状态量的状态方程。如下

在这里插入图片描述

一、引言 横向控制车辆控制中的重要组成部分,其主要作用是实现车辆横向方向上的运动控制。在车辆的行驶过程中,横向控制对于保证车辆的稳定性和安全性具有至关重要的作用。因此,车辆横向控制方法的研究和应用一直是汽车工程领域的热点问题。 本文主要介绍基于车辆模型横向控制方法。首先,介绍了车辆模型的基本概念和分类。然后,详细阐述了基于车辆模型横向控制方法,包括传统的基于PID控制器的方法和基于模型预测控制的方法。最后,讨论了当前横向控制方法存在的问题,并给出了未来发展的方向。 二、车辆模型 车辆模型是研究车辆运动行为的重要工具,其主要作用是描述车辆在运动过程中的动力学和几何学特性。根据研究的目的和需要,车辆模型可以分为多种不同类型。下面,将介绍几种常见的车辆模型。 1. 单轮模型 单轮模型是最简单的车辆模型,其将车辆视为一个质点,只考虑车轮和地面之间的接触,不考虑车辆的悬挂系统和车身的变形。单轮模型可以用来研究车辆在低速行驶和直线行驶时的运动特性,但是对于高速行驶和弯道行驶时的车辆运动特性描述不准确。 2. 二自由度车辆模型 二自由度车辆模型是目前应用最广泛的车辆模型之一,它考虑了车辆的悬挂系统和车身的变形,具有较高的准确性。二自由度车辆模型车辆视为两个质点,分别代表车身和悬挂系统,通过弹簧和阻尼来模拟车辆的悬挂系统。 3. 多体动力学模型 多体动力学模型是一种较为完整的车辆模型,它考虑了车辆各个部件之间的相互作用,包括悬挂系统、车辆结构、转向系统、传动系统等。多体动力学模型可以精确描述车辆在各种不同工况下的动力学特性,但是计算量较大,需要使用高性能计算机进行模拟。 三、基于PID控制器的横向控制方法 PID控制器是一种经典的控制方法,广泛应用于工业控制和自动化领域。在车辆控制领域,PID控制器也是一种常用的横向控制方法。其主要思想是通过不断地调整控制器的输出,来使车辆横向运动误差逐渐趋近于零。 1. 前馈PID控制器 前馈PID控制器是一种常用的PID控制器变体,其主要特点是在传统的PID控制器中加入了前馈项,用来补偿车辆横向运动误差的瞬时变化。前馈项可以根据车辆模型和路面的实际情况进行设计和调整,以提高控制器的性能和鲁棒性。 2. 自适应PID控制器 自适应PID控制器是一种能够自动调整控制器参数的PID控制器,其主要特点是能够根据车辆运动状态的变化,自动调整控制器的参数,以提高控制器的性能和适应性。自适应PID控制器可以根据车辆模型和路面的实际情况进行设计和调整,以满足不同工况下的控制需求。 四、基于模型预测控制横向控制方法 模型预测控制是一种基于数学模型的高级控制方法,其主要思想是通过预测车辆的运动状态,来选择最优的控制策略,从而实现车辆的运动控制。在车辆横向控制领域,模型预测控制也是一种较为先进的横向控制方法。 1. 基于线性模型预测控制的方法 基于线性模型预测控制的方法是一种常用的模型预测控制方法,其主要思想是通过线性化车辆模型,得到车辆运动状态的预测模型,然后通过选择最优的控制策略,来实现车辆的运动控制。由于线性模型预测控制具有计算简单、控制效果好等优点,在车辆横向控制领域得到了广泛的应用。 2. 基于非线性模型预测控制的方法 基于非线性模型预测控制的方法是一种能够更加准确地描述车辆运动状态的模型预测控制方法,其主要特点是能够处理车辆运动过程中的非线性特性。基于非线性模型预测控制的方法可以通过选择不同的预测模型和优化算法,来实现车辆的运动控制。 五、问题与展望 当前,车辆横向控制方法已经取得了很大的进展,但是仍然存在一些问题。例如,在传统的PID控制器中,参数调整需要经验和试验,并且控制效果容易受到外部环境和车辆状态的影响。在基于模型预测控制的方法中,模型的建立和优化需要大量的计算和实验数据支持,且对控制器的鲁棒性和稳定性要求较高。 未来,车辆横向控制方法的发展方向将主要集中在以下几个方面:一是基于深度学习的控制方法,该方法可以利用大量的数据进行训练,以实现更加准确和鲁棒的控制;二是基于智能化的控制方法,该方法可以通过智能决策和自适应调节,实现更加精确和高效的控制;三是基于多模型协同控制的方法,该方法可以根据不同的工况和路面情况,选择不同的控制策略,以实现最优的控制效果。 总之,车辆横向控制方法的研究和应用具有重要的意义,其发展将为汽车工程领域的技术创新和产业发展提供重要支撑。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值