泛函分析基础10-巴拿赫空间中的基本定理3:共轭算子

本文介绍了在巴拿赫空间中,有界线性算子的共轭算子概念。通过定义和性质证明了共轭算子也是有界线性算子,并且其范数等于原算子的范数。此外,还讨论了在希尔伯特空间中的特殊情况,以及与希尔伯特共轭算子的关系。
摘要由CSDN通过智能技术生成

X , Y X , Y X,Y 是 两个赋范线性空间, X ′ X ^ { \prime } X Y ′ Y ^ { \prime } Y 分别是 X X X Y Y Y 的 共轭空间, T T T X X X Y Y Y 中 的有界线性算子今对任意 g ∈ Y ′ , g \in Y ^ { \prime } , gY, 可以如下定义 X X X 上的泛函 f : f : f:

f ( x ) = g ( T x ) , f ( x ) = g ( T x ) , f(x)=g(Tx),

这个泛函 f f f 显然是线性的,由于

∣ f ( x ) ∣ = ∣ g ( T x ) ∣ ⩽ ∥ g ∥ ∥ T x ∥ ⩽ ∥ g ∥ ∥ T ∥ ∥ x ∥ , | f ( x ) | = | g ( T x ) | \leqslant \| g \| \| T x \| \leqslant \| g \| \| T \| \| x \| , f(x)=g(Tx)g∥∥Txg∥∥T∥∥x,

f f f 也是有界线性泛函,即 f ∈ X ′ . f \in X ^ { \prime } . fX. 于是我们建立起了 g ↦ f g \mapsto f gf 的对应,即由 T T T 派生出一个从 Y ′ Y ^ { \prime } Y X ′ X ^ { \prime } X 的 算子 T ∗ : T ∗ g = f . T ^ { * } : T ^ { * } g = f . T:Tg=f. T × T ^ { \times } T× T T T 的 共轭算子

定理

有界线性算子 T T T 的共轭算子 T ∗ T ^ { * } T 也是有界线性算子,并且 ∥ T ∗ ∥ = ∥ T ∥ . \left\| T ^ { * } \right\| = \| T \| . T=T∥.

证明
对任何 g 1 , g 2 ∈ Y ′ g _ { 1 } , g _ { 2 } \in Y ^ { \prime } g1,g2Y 及数 α , β , \alpha , \beta , α,β, T × T ^ { \times } T× 的定义,有

T × ( α g 1 + β g 2 ) ( x ) = ( α g 1 + β g 2 ) ( T x ) = α g 1 ( T x ) + β g 2 ( T x ) = α T x g 1 ( x ) + β T x g 2 ( x ) = ( α T x g 1 + β T x g 2 ) ( x ) , x ∈ X , \begin{aligned} T ^ { \times } \left( \alpha g _ { 1 } + \beta g _ { 2 } \right) ( x ) = \left( \alpha g _ { 1 } + \beta g _ { 2 } \right) ( T x ) = \alpha g _ { 1 } ( T x ) + \beta g _ { 2 } ( T x ) \\ = \alpha T ^ { x } g _ { 1 } ( x ) + \beta T ^ { x } g _ { 2 } ( x ) = \left( \alpha T ^ { x } g _ { 1 } + \beta T ^ { x } g _ { 2 } \right) ( x ) , x \in X , \end{aligned} T×(αg1+βg2)(x)=(αg1+βg2)(Tx)=αg1(Tx)+βg2(Tx)=αTxg1(x)+βTxg2(x)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值