Abstract
本文重新审视了少样本3D点云语义分割(FS-PCS),重点关注现有最先进技术中的两个重要问题:前景泄漏和稀疏点分布。前者由于非均匀点采样而产生,使得模型可以区分前景和背景之间的密度差异,从而更容易进行分割。后者源于仅采样2,048个点,限制了语义信息,并偏离了现实世界的实践。为了解决这些问题,我们引入了一个标准化的FS-PCS设置,并在此基础上建立了一个新的基准。此外,我们提出了一种新颖的FS-PCS模型。与以前主要通过优化支持特征以增强原型的特征优化方法不同,我们的方法基于相关优化,称为相关优化分割(COSeg)。具体来说,我们为每个查询点计算特定类别的多原型相关(CMC),表示其与类别原型的相关性。然后,我们提出了超相关增强(HCA)模块来增强CMC。此外,为了解决少样本训练固有的导致模型基类易感性的特性,我们建议在训练过程中为基类学习非参数原型。学习到的基类原型通过基类原型校准(BPC)模块来校准背景类的相关性。在流行数据集上的实验表明,COSeg优于现有方法。
代码地址:github.com/ZhaochongAn/COSeg
Introduction
深度神经网络的快速进展推动了对各种应用中3D点云理解的探索。与图像不同,点云固有地捕捉到复杂的物体结构,从而实现细粒度分析。为了减少创建数据集所需的大量人工工作,少样本点云语义分割(FS-PCS)成为一项关键任务,使3D分割模型能够在少量注释样本的情况下推广到新类别。
然而,我们发现当前FS-PCS设置中存在两个重要问题:(1)前景泄漏。常见的3D分割实践是从场景中随机采样点&