Problem
大脑的参考模板在神经影像工作流程中起着核心作用,是报告标准化结果的基础。而模板或者图谱的选择是不同研究中方法学差异的一个相关来源,最近被认为是对神经科学可重复性的一个重要挑战而受到关注。
大多数情况下,我们所使用的模板由神经影像软件提供。以MNI空间为例,SPM,FSL和FreeSurfer都提供了MNI空间的模板。SPM96和更早版本使用的是单一被试的模板Colin27,SPM99之后的版本相继提供了152个被试线性平均和非线性平均得到的模板。FSL发布的模板事实上并不在MNI官方发布的模板集中。FreeSurfer所使用的模板是基于305名被试的线性平均。因此,如果仅报告MNI空间非常不准确。之前一个研究比较了不同预处理管道时顺便比较了MNI的版本,表明使用不同版本的MNI模板结果不同。Carp(2012)对241篇fMRI文章的研究发现,仅有50篇文章报告了具体的MNI模板信息。
作者在补充材料中展示了一个基于NLP的简单分析,使用爱斯维尔数据的API,下载了Neuroimage和Neuroimage: Clinical的16,812篇文章,其中6,048篇文章有MNI这个词,对这些句子做语义主题分析。
结果表明,大约500篇文章中, MNI和SPM(9%的文章,#3)或 FSL(8%的文章,#5)在同一个句子中,这两个词从来没有一起出现过。由于SPM和FSL软件的广泛使用,一起捆绑使用的MNI模板也获得了广泛的使用。
Solution
TemplateFlow是一个跨物种,多尺度脑部模板和图谱的分享平台,旨在提高神经影像学结果的可靠性。基于DataLad和BIDS,内容可浏览下载,也可通过API获取。新的模板使用TemplateFlow管理器进行添加,审核通过后可入库。
目前包括以下模板:
TemplateFlow中包括的几个文件夹的前缀都是tpl(template),但从文章补充材料看它还会共享Mask和Atlas等内容。
TemplateFlow应该会成为一些常用或者新晋Atlas的集散地,比如:
https://github.com/neurodata/neuroparc
如何让影像数据和成果可查询、可访问、可交互、可再用(FAIR),TemplateFlow是继OpenNeuro,BIDS等的又一次努力。记得刚入门时找AAL的信息都找了很久,最终在某个Toolbox中才找到所需信息,使用Shen268时发邮件找作者才找到相关信息。相信类似的问题也或多或少存在于基于动物模型的影像研究中,而这一类与模板/图谱使用相关的问题会随着TemplateFlow建设和维护迎刃而解。
Refs
Ciric, R., Thompson, W. H., Lorenz, R., Goncalves, M., MacNicol, E. E., Markiewicz, C. J., ... & Esteban, O. (2022). TemplateFlow: FAIR-sharing of multi-scale, multi-species brain models. Nature Methods, 19(12), 1568-1571.
Lawrence, R. M., Bridgeford, E. W., Myers, P. E., Arvapalli, G. C., Ramachandran, S. C., Pisner, D. A., ... & Vogelstein, J. T. (2021). Standardizing human brain parcellations. Scientific data, 8(1), 1-9.