Network Correspondence Toolbox (NCT)| 使用Dice指数评估网络特异性

TLDR: 本文介绍了一个名为网络对应工具箱(NCT)的新工具,原理是Dice系数+Spin Test,用于通过定量分析比较新的神经影像结果与多个现有大脑网络图谱之间的空间对应关系,从而促进研究结果的标准化和可比性。

4c470ea8a760caa879aa7befeba2de88.pngdoi: https://doi.org/10.1101/2024.06.17.599426

近年来,神经科学的研究表明,大脑的宏观动态可以分解为一组功能性网络。然而,这些网络的空间拓扑结构和命名在不同的研究中存在显著差异,这使得跨研究结果的解释和整合变得困难。为了解决这一问题,本研究介绍了一种名为Network Correspondence Toolbox(NCT)的新工具,旨在帮助研究人员在神经影像结果与16个广泛使用的功能性大脑图谱之间进行空间对应的定量分析。NCT的推出为神经网络科学研究中的结果报告提供了标准化工具,帮助研究者更好地将新发现与既有图谱进行比较。

45fc8b8fb182dc21abc2321155248686.png

图1. 网络对应工具箱(NCT)中包含的示例图谱。NCT 是一个工具箱,可用于探索多个功能性网络图谱之间的网络对应关系,并对新神经影像结果与多个图谱进行定量比较。这里展示了十个图谱作为示例。在这个例子中,位于中心的 Yeo 17 网络图谱在 fsaverage6 空间中用作参考图谱。所有其他位于不同空间的周边图谱都被投影到 fsaverage6 空间中,以计算它们与参考网络的 Dice 重叠系数。

05bd094c5470559843b7df3a2ca53172.png

图2. NCT 用法示例,探索输入数据与一组图谱之间的网络对应关系。这里检测的是一个单维度输入结果与4个图谱之间的重叠情况:Yeo2011-17、Gordon2011-17、Glasser2016-360+Ji2019-12以及Shen2013-268-8。

(A) 提供输入数据以及一个配置文件,指定名称、数据空间(例如,fs_LR_32k、fsaverage6、FSLMNI2mm)和数据类型(如果输入数据包含浮动值则为“Metric”;如果输入数据包含二进制值则为“Hard”)。这里,输入数据位于 fs_LR_32k 空间,并且包含二进制值,数据类型为“Hard”。用户还提供了一个图谱列表,指明要包含哪些图谱。看起来除了Binary类型的输入,它还能支持Numeric的数据类型。对于Numeric类型的数据,具体实现可能也是卡阈值,然后得到Binary去计算Dice(待考)。

(B) NCT 读取输入数据并将列表中的图谱投影到输入数据空间。

(C) NCT 计算输入数据与列表中图谱的网络之间的 Dice 重叠系数。NCT 还进行spin-test以检验输入数据和网络是否显著重叠。

(D) NCT 通过时钟图、雷达图以及表格的形式呈现结果。时钟图提供了不同图谱中网络之间 Dice 重叠系数的可视化比较。不同颜色代表不同的图谱。条形代表 Dice 重叠系数。与输入数据显著重叠的网络(p < 0.05)由网络名称表示。字体大小越大表示 Dice 系数越大。雷达图显示了单个图谱内部各网络之间的 Dice 重叠情况。与输入数据显著重叠的网络(p < 0.05)由“*”标出。表格显示不同图谱之间的具体 Dice 系数和 p 值。NCT 使用每个图谱的原始论文中的网络名称。

31162bd82e948a26a09f9d2352e76ab1.png

图3. NCT 用法示例,探索两个图谱(Yeo2011 vs. Gordon2017)之间的网络对应关系。

(A) 用户指定参考图谱的名称(此处为 Yeo2011-17)和比较图谱的名称(此处为 Gordon2017-17)。Yeo 17网络图谱位于 fsaverage6 空间,而 Gordon2017 17网络图谱位于 fs_LR_32k 空间。在这种情况下,参考图谱空间是 fsaverage6。fsaverage6 和 fs_LR_32k 都是标准化的表面空间,前者来源于 FreeSurfer,后者来源于 Human Connectome Project。因此,NCT 将 Gordon2017 17网络投影到 fsaverage6 空间。

(B) NCT 计算 Yeo 17网络图谱和 Gordon2017 17网络图谱之间的网络 Dice 重叠系数。NCT 还进行spin-test,以检验网络之间是否显著重叠。

(C) NCT 使用重叠热图展示这两个图谱之间的网络对应关系,其中第k行和第m列代表 Yeo17网络图谱的第k个网络与 Gordon2017 网络图谱的第m个网络之间的 Dice 重叠系数。高 Dice 系数表示两个网络之间的重叠度高。较亮的颜色表示重叠度较高,较暗的颜色表示重叠度较低。“*”表示两个网络显著重叠(p < 0.05)。

e2a65ff1e705855a2b0a50ab07be8e05.png

图4. 具有相似名称的网络可能表现出不同的空间拓扑结构。图中展示了来自四个不同图谱的Salience网络。这些网络在多个图谱中使用了相似的命名方式,但它们所覆盖的解剖位置不同,并且大部分是非重叠的。同名不同命——这些“Salience”网络看似同名,其实各自忙着守着各自的大脑领地!

08090ec441b28ea588fd517b2b88e075.png

图5. NCT 用法示例:探索了HCP工作记忆任务(N-back: 2BK vs. 0BK)与来自8个图谱的网络之间的重叠情况。

NCT基于python,GitHub地址:

https://github.com/rubykong/cbig_network_correspondence

该工具箱已发布到PyPI:

https://pypi.org/project/cbig-network-correspondence

详细的文档和教程:

https://rubykong.github.io/cbig_network_correspondence

类似的方法:网络富集显著性检验NEST(?)


ac5ff4bb8ad5ee84fec45aa83c8a39d5.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值