资产风险收益预估

本文探讨了巴塞尔协议下的风险管理,重点介绍了资产组合管理中的RAROC和EVA。通过数据处理、迁徙率计算、Vintage预估和催收成本测算,对资产风险收益进行预测。文章详细阐述了计算过程,包括逾期阶段的逾期个数、余额和催收成本,并分析了迁徙率趋势,为优化资产组合提供依据。
摘要由CSDN通过智能技术生成

 

       巴塞尔协议下的全面风险管理的目标是金融机构在资本约束下实现利润的最大化,而资产组合管理是全面风险管理的核心概念。资产组合管理的核心指标是风险调整后资本收益率(RAROC)和经济增加值(EVA)。公式如下:

RAROC.png

 

       本文基于上述思想,试图从风险损失、资产迁徙、催收运营成本角度计算资产收益情况。文章内容基于本人经验与理解,不妥之处望各位多加指正。

 

目录

1.数据处理

2.资产包迁徙率计算

3.资产包Vintage预估

4.资产包催收成本测算

5.单体风险收益预估

 

一、数据处理

       首先,需要根据资产mob表计算出单个资产包截止当前时点每一期各逾期阶段的逾期个数、余额、累计逾期个数,得到一张汇总表大致如下:

汇总表.png

       其中左侧部分为各个资产包每一期各阶段的逾期个数,基于此数据可以计算每一期的迁徙率;m3+(金额)这一列是余额,是用来计算M3+vintage数据的;右侧是累计的逾期个数,用来计算催收成本。此表基于风控mob表计算,生成的主要代码如下:

# 从mob表取数

conn=pymysql.connect(host='',user='',password='',db='')

df=pd.read_sql('select a.*,b.cnt,b.principalsum from ( \

select business_line `产品线`,date_format(open_date,"%Y-%m") as `放款月`,mob, \

sum(case when current_cycle_status=0 then 1 else null end ) as "m0", \

sum(case when current_cycle_status=1 then 1 else null end ) as "m1", \

sum(case when current_cycle_status=2 then 1 else null end ) as "m2"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值