向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。
•
当
A
⋅
B
>0
时,两个向量之间的夹角小于
90
度,即它们大致指向相同的方向。
•
当
A
⋅
B
=0
时,两个向量是正交的,即它们的夹角为
90
度。
•
当
A
⋅
B
<0
时,两个向量之间的夹角大于
90
度,即它们大致指向相反的方向。
应用:
判断对象是否在摄像机的视野内。
计算光照,特别是在 Phong 反射模型中。
判断两个向量是否大致朝向相同或相反的方向。
游戏示例1:
想象一下你正在玩一个第一人称射击游戏。在这个游戏中,敌人可以从任何方向靠近你。但为了优化游戏性能,你不希望渲染那些在你的背后或者在建筑物后面的敌人,因为你看不到他们。这时,我们可以使用点乘来快速判断敌人是否在你的前方视野内。
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public class AIManagerMonster : MonoBehaviour
{
// 学习向量点乘
//业务逻辑:判断怪物相对于主角的方位-主角前方的向量和与每一个怪物的连线构成的向量
//这两个向量之间的夹角可以判断怪物是否在人物前方
//如果在前方可以显示怪物,并让怪物走过来,如果不在就不渲染,节省性能
//程序逻辑:1.拿到主角的前方向量A 2.拿到怪物当前坐标向量 B 3.算出人物到怪物的方向向量C(向量的减法)
//4.点乘A和C,得出一个cos(A和C夹角)的余弦值-一个标量数值=Vector.Dot(A,C)
//5.如果数值大于0 两个向量之间的夹角小于90度,即它们大致指向相同的方向
//=0 时,两个向量是正交的,即它们的夹角为90度。
//<0 时,两个向量之间的夹角大于90度,即它们大致指向相反的方向。
//获取主角的坐标
GameObject MainRole;
//获取一个怪物的坐标
GameObject [] OneMonster;
void Start()
{
MainRole= GameObject.FindGameObjectWithTag("MyRole");
OneMonster = GameObject.FindGameObjectsWithTag("Monster");
}
// Update is called once per frame
void Update()
{//怪物的坐标减去人物的坐标得到人物指向怪物的方向向量
Vector3 RoleToMonsterDir = OneMonster[0].transform.position - MainRole.transform.position;
Vector3 NorDir = RoleToMonsterDir.normalized;//向量归一化
Debug.DrawLine(MainRole.transform.position, OneMonster[0].transform.position, Color.green);//绘制出人物和怪物连线的向量
Debug.DrawLine(MainRole.transform.position, MainRole.transform.forward, Color.red);//绘制出人物前方的向量
float DotResult= Vector3.Dot(MainRole.transform.forward, NorDir);//进行点乘计算,得到什么?CosA
if (DotResult>0)
{
Debug.Log("怪物在我的前方");
}
else if (DotResult==0)
{
Debug.Log("怪物在我的侧面");
}
else
{
Debug.Log("怪物在我的后方");
}
float Jiaodu = Mathf.Acos(DotResult) / Mathf.Deg2Rad;
Debug.Log("两个向量的角度-Mathf.Acos计算:" + Jiaodu);//这是两个向量夹角角度
Debug.Log("两个向量的角度-Vector3.Angle直接计算:" + Vector3.Angle(MainRole.transform.forward, NorDir));
//上面两种方式计算的结果是一样的
}
}