VennDiagram多元韦恩图---以3元和5元为例

文章展示了使用VennDiagram库在R中创建的三元图和五元图,比较了TM-1在冷处理和盐处理1-24小时的不同时间点的基因表达差异。

三元

library(VennDiagram)
> head(c1_tf_p)
                TF
1 Gorai.002G124900
2 Gorai.005G188700
3 Gorai.001G183400
4 Gorai.010G028200
5 Gorai.004G181900
6 Gorai.011G067500
> head(c3_tf_p)
                TF
1 Gorai.002G124900
2 Gorai.006G008800
3 Gorai.002G171200
4 Gorai.002G177000
5 Gorai.007G309400
6 Gorai.005G211900
> head(c6_tf_p)
                TF
1 Gorai.002G124900
2 Gorai.001G183400
3 Gorai.005G188700
4 Gorai.002G171200
5 Gorai.002G177000
6 Gorai.010G028200
#绘制三元图
venn_ploy <- venn.diagram(x=list(c1_tf_p$TF,c3_tf_p$TF,c6_tf_p$TF),
             scaled = F, # 根据比例显示大小
             #alpha= 0.5, #透明度
             lwd=1,lty=1,col=c("#FEADB2", "#9DC5E7", "#F5B184"), #圆圈线条粗细、形状、颜色;1 实线, 2 虚线, blank无线条
             label.col ='black' , # 数字颜色abel.col=c('#FFFFCC','#CCFFFF',......)根据不同颜色显示数值颜色
             #cex = 2, # 数字大小
             fontface = "bold",  # 字体粗细;加粗bold
             fill=c("#FEADB2", "#9DC5E7", "#F5B184"), # 填充色 配色
             category.names = c("TM-1 cold 1h", "TM-1 cold 3h","TM-1 cold 6h") , #标签名
             cat.dist = 0.05, # 标签距离圆圈的远近
             #cat.pos = c(-120, -240, -180), # 标签相对于圆圈的角度cat.pos = c(-10, 10, 135)
             cat.cex = 1, #标签字体大小
             cat.fontface = "bold",  # 标签字体加粗
             cat.col='black' ,   #cat.col=c('#FFFFCC','#CCFFFF',.....)根据相应颜色改变标签颜色
             cat.default.pos = "outer",  # 标签位置, outer内;text 外
             output=TRUE,
             #filename = NULL,# 不保存文件直接可视化
             force.unique = T,
             print.mode = c("percent", "raw"),#显示百分比
             main = "TF enrichment of TM-1 at cold",#标题
             main.cex = 1.5,#标题大小
             filename='TM-1 cold tf enrichment.png',# 文件保存命名
             imagetype="png",  # 类型(tiff png svg)
             resolution = 400,  # 分辨率
             compression = "lzw"# 压缩算法
             )
grid.draw(venn_ploy)

在这里插入图片描述

五元

library(VennDiagram)
library(RColorBrewer)
#将数据存储为列表
x <- list(salt_1h=c1_tf_p$TF,salt_3h=c2_tf_p$TF,
          salt_6h=c3_tf_p$TF,salt_12h=c4_tf_p$TF,
          salt_24h=c5_tf_p$TF)

venn.diagram(x,  # 这里的x是用来生成Venn图的数据
             fill = brewer.pal(5, "Set3"),  # 设置填充颜色,使用brewer.pal生成颜色调色板,"Set3"表示使用Set3颜色方案的前5种颜色
             cex = c(1.5, 1.5, 1.5, 1.5, 1.5, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8,
                     1, 0.8, 1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55, 1, 1, 1, 1, 1, 1.5),  # 设置Venn图中各个部分的大小,使用c()函数指定每个部分的大小
             main = "TM-1",  # 设置Venn图的标题为"TM-1"
             print.mode = c("percent", "raw"),  # 设置打印Venn图时显示的信息:百分比和原始值
             lty = "blank",  # 设置边缘线的类型为"blank",即隐藏边缘线
             force.unique = T,  # 强制确保图中的元素是唯一的,避免重叠
             scaled = F,  # 不对Venn图进行缩放
             main.cex = 1.5,  # 设置标题的大小为1.5
             main.fontface = "bold",  # 设置标题的字体加粗
             filename = "TM-1 salt.png",  # 设置保存图像的文件名为"TM-1 salt.png"
             imagetype = "png", 
             resolution = 400,  
             compression = "lzw")  # 设置图像的分辨率为400dpi,使用LZW压缩算法进行压缩保存

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值