三维空间中的球坐标系

初中数学接触过极坐标,用半径r和与x轴夹角 θ \theta θ来表示二维平面上一个点的位置。

球坐标系就是极坐标系在三维上的推广。球坐标系在三维场景中非常常见,在三维交互性的设计中也免不了球坐标系的应用,如AR/VR头显中的陀螺仪传感器等。

相比于极坐标 ( r , θ ) (r, \theta) (r,θ),球坐标额外增加了一个角度 ( r , θ , ϕ ) (r, \theta, \phi) (r,θ,ϕ),用一张图可以轻易地看出来:
spherical
与z轴正向的夹角,我们成为极角(polar angle),与x轴正向的夹角,我们成为方位角(azimuth angle)。与这里需要强调的是,在物理学中极角的符号是 θ \theta θ,而方位角的符号是 ϕ \phi ϕ,在数学中刚好反过来。在实际使用过程中,我们需要辨别。

r = x 2 + y 2 + z 2 (1) r=\sqrt{x^2+y^2+z^2} \tag{1} r=x2+y2+z2 (1) ϕ = a r c c o s ( z r ) (2) \phi=arccos({z \over{r}})\tag{2} ϕ=arccos(rz)(2) θ = a r c c o s ( x r s i n ϕ ) (3) \theta=arccos({x\over{rsin\phi}})\tag{3} θ=arccos(rsinϕx)(3)

球坐标系的性质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木盏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值