初中数学接触过极坐标,用半径r和与x轴夹角 θ \theta θ来表示二维平面上一个点的位置。
球坐标系就是极坐标系在三维上的推广。球坐标系在三维场景中非常常见,在三维交互性的设计中也免不了球坐标系的应用,如AR/VR头显中的陀螺仪传感器等。
相比于极坐标
(
r
,
θ
)
(r, \theta)
(r,θ),球坐标额外增加了一个角度
(
r
,
θ
,
ϕ
)
(r, \theta, \phi)
(r,θ,ϕ),用一张图可以轻易地看出来:
与z轴正向的夹角,我们成为极角(polar angle),与x轴正向的夹角,我们成为方位角(azimuth angle)。与这里需要强调的是,在物理学中极角的符号是
θ
\theta
θ,而方位角的符号是
ϕ
\phi
ϕ,在数学中刚好反过来。在实际使用过程中,我们需要辨别。
r = x 2 + y 2 + z 2 (1) r=\sqrt{x^2+y^2+z^2} \tag{1} r=x2+y2+z2(1) ϕ = a r c c o s ( z r ) (2) \phi=arccos({z \over{r}})\tag{2} ϕ=arccos(rz)(2) θ = a r c c o s ( x r s i n ϕ ) (3) \theta=arccos({x\over{rsin\phi}})\tag{3} θ=arccos(rsinϕx)(3)
球坐标系的性质