b赵富邦论文相关

2023-12-3(9:51)

 

2d3ceb28ccb79cf426ad0e79ee288479.png

20fba201d6e262b875c5caae335f68aa.png

【信息抽取】基于prompt的通用信息抽取方案——千言数据集

任务介绍

通用信息抽取

按照特定的抽取框架S,从给定的一组自由文本X中抽取出所有符合抽取需求的信息结构Y(实体、关系、事件等)。对于同一输入文本,不同的抽取框架会抽取不同的信息结构.

任务类型

NER:文本->(实体类型,实体span)两元组   NER任务

Relation Extraction:文本→>(主体span,关系类型,客体span)三元组.  关系抽取任务

Event Extraction:文本->(事件类型,论元角色,论元span)三元组      事件抽取任务

opinion Extraction :文本-→>(意见对象span,情感表达span,情感极性)三元组  观点抽取任务

 

任务设定

Seen Schema:有充分训练数据(Rich-Resource ).   高资源场景

Unseen Schema:仅有少量训练数据(Low-Resource )    低资源场景

通用信息抽取的本质:若干span和类别 组成的多元组的集合

要求模型具有抽取extraction,分类classification和将若干span和类别进行组合的combination的能力

 

高资源,指针层

9c998b51fb1d8c63e11a76bcceb84c3f.png

 

 

 

 

 

 

低资源,训练数据较少,l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值