如何直观形象地理解梯度、散度、旋度

本文通过生动的例子解释了梯度、散度和旋度的概念。梯度是从纯量场到向量场的转换,指示了纯量值变化最快的方向;散度描述了向量场在某一点上的发散或集中程度;旋度反映了向量场中旋转部分的强度和方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章转自:https://zhuanlan.zhihu.com/p/25285580
版权归原作者!

梯度: 运算的对像是纯量,运算出来的结果会是向量。(纯量–>向量)

在一个纯量场中,梯度的计算结果会是”在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过微积分该知道甚么叫极限吧?)纯量值最小处指向周围纯量值最大处。而这个向量的大小会是上面所说的那个最小与最大的差距程度”

举例子来讲会比较简单,如果现在的纯量场用一座山来表示,纯量值越大的地方越高,反之则越低。经过梯度这个操作数的运算以后,会在这座山的每一个点上都算出一个向量,这个向量会指向每个点最陡的那个方向,而向量的大小则代表了这个最陡的方向到底有多陡。

梯度下降法就是沿着梯度方向找极值的方法,如图中的像山一样的色彩区域,为了定位到山的最低点,我们随机从一个地方出发,然后像小朋友一样一步一步走下山,最终我们就会走到最低点(或者会是局部最低点)。
这里写图片描述

散度:运算的对像是向量,运算出来的结果会是纯量。(向量–>纯量)(向量的点乘)

散度的作用对像是向量场,如果现在我们考虑任何一个点(或者说这个点的周围极小的一块区域),在这个点上,向量场的发散程度,如果是正的,代表这些向量场是往外散出的。如果是负的,代表这些向量场是往内集中的。

一样,举例子:因为散度的作用对像是向量场,所以就不能用上面所讲的山来想象,这次要想象一个大广场里挤了很多人,如果每个人都在到处走动,是不是可以把每个人的行动都看成是一个向量,假如现在某人放了一个屁,周围的人(可能包含他自己)都想要赶快闪远一点,就会发现,在这块区域的人都往这小块区域以外的方向移动。对啦,这就是散度(你也可以想说是闪远一点的闪度……冷……),而且散度为正,大家如果散得越快,散得人越多,这个散度算出来就就越大。

另一个例子就是在橄榄球场上,大家都往抱球的人身上冲撞,在这块区域人都往内移动,这是散度为负值,中间持球人就是吸收通量的负源,像黑洞一样收割者一切。
这里写图片描述

旋度:运算的对像是向量,运算出来的结果会是向量。(向量–>向量)(向量的叉乘)

旋度的作用对象也是向量场,这次直接用上面的例子来讲:如果现在散开的众人都是直直的往那个屁的反方向散开,这时候你看到这些人的动线是不是就是一个标准的幅射状??不过事实上,,每个人在闻到屁的时候是不会确切的知道屁到底是来自哪个方向的。而可能会走错方向,试过之后才发现不对劲,越找越臭。这时候你看到众人的走向不见得就是一个幅射状(大家都径向移动),而可能有一些切向移动的成份在(以屁发点为中心来看)旋度对应的就是这些切向移动的情况,相对来讲,散度对应的其实就是径向移动的情况。.而一个屁,虽然可能会像上述的造成一些切向的移动,但理论上来讲,并不会使散开的众人较趋向于顺时钟转,或逆时钟转。在这种情况,顺时钟转的情况可以看作与逆时钟转的情况抵消,因此,在这情况下,旋度仍然是零。也就是说,一个屁能造成散度,而不会造成旋度……而甚么时候是有旋度的呢??如果这时候音乐一放,大家开始围着中间的营火手拉手跳起土风舞(当然是要绕着营火转的那种啦)这时候就会有旋度没有散度啦。(刚刚一直放屁的那位跑出去找厕所的除外)。
这里写图片描述

总结:

以上这三个,有一点一定要记得的。不论是梯度,散度,旋度,都是一种local的量(纯量,向量),所考虑的都是任何一点(其周围极接近,极小的小范围)的情况。以上举的例子因为要容易了解,,所以都是针对二度空间向量为例,而且都是很大的东西,但广场是一个点,营火晚会也是一个点,纳须弥于芥子,这就请自行想象吧。

### 梯度旋度与积分变换的数学规则 #### 1. 梯度的概念及其与积分的关系 梯度是一个矢,描述标的变化率和方向。对于一个标函数 \( f(x, y, z) \),其梯度定义为: ```python grad(f) = (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k ``` 通过格林定理或斯托克斯定理可知,在二维区域上,线积分可以通过梯度来表达为面积分的形式[^2]。 #### 2. 的概念及其与体积积分的关系 用于衡在某一点处的发。对于矢 \( \vec{F}(x, y, z) \),其定义为: ```python div(F) = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z ``` 根据高斯定理(Gauss's Divergence Theorem),闭合曲面上的通等于该封闭区域内的体积分[^3]: \[ \int_{S} (\vec{F} \cdot d\vec{A}) = \int_{V} (div(\vec{F}))dV \] #### 3. 旋度的概念及其与曲线积分的关系 旋度用来描述矢中的旋转特性。对于矢 \( \vec{F}(x, y, z) \),其旋度定义为: ```python curl(F) = (∂Fz/∂y - ∂Fy/∂z)i + (∂Fx/∂z - ∂Fz/∂x)j + (∂Fy/∂x - ∂Fx/∂y)k ``` 依据斯托克斯定理(Stokes' Theorem),开曲面上的环流可以用边界曲线上的线积分表示为: \[ \oint_C (\vec{F} \cdot d\vec{l}) = \int_S ((curl(\vec{F})) \cdot d\vec{A}) \][^5] #### 4. 积分变换的应用 积分变换如傅里叶变换能够将空间域内的微分方程转化为频率域下的代数方程,从而简化求解过程。例如,拉普拉斯算子在频域下表现为简单的乘法运算。 #### 5. KL与其他概念的区别 尽管KL涉及概率分布间的距离测,但它并不属于传统意义上的梯度旋度范畴。它主要用于统计学领域,评估两分布间的信息损失情况[^4]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值