永磁同步电机控制笔记:永磁同步电机电阻电感磁链常数的测量方法

本文介绍了如何测量永磁同步电机的电阻电感参数及磁链常数。通过电桥或手动旋转电机进行电感测量,无电桥时利用一阶惯性系统特性估算电阻电感。同时,通过测量反电动势来确定磁链常数,涉及电机的动态响应和频率分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、电阻电感参数的测量

1.1、使用电桥测量

电桥测量相电阻,相电感的方法非常简单,任意两相之间电阻电感,相电阻Rs,相电感Ls均等于测量值除以2。
此处重点说明测量直轴电感交轴电感Ld、Lq的方法。
对于永磁同步电机,任意两相之间电感跟电机转子位置相关,有如下关系:
在这里插入图片描述
根据上式
测量任意两相之间电感,缓慢手动旋转电机180度电角度,电感值大致呈正弦变化。
在这里插入图片描述
记录两相电感的最大值和最小值。
Lq = Max(Lab)/2
Ld = Min(Lab)/2
参考链接: 点击这里

1.2、没有电桥情况下测量

在没有电桥的情况下,想要准确测量电机电阻电感比较困难,不过可以估测出大致结果。
电机在静止状态下,任意一相定子绕组到中性点的电学模型可以看作一组串联的电阻电感。该电路可以看作一个一阶惯性系统,可以根据该电路的0状态相应特性估算电阻电感参数。
因为电机定子绕组的中性点不易得到,对任意两相绕组施加激励,计算得到两相之间电阻,两相之间电感,Rab,Lab,然后分别除以2,得到Rs,Ls
根据一阶惯性系统的特性,对任意两相绕组施加阶跃电压,得到电流相应,如下图蓝色波形。
在这里插入图片描述
用示波器测量激励电压和相应电流。等到电流稳态时,记录电流Iinf,电压U0,有
Rab = U0/Iinf
测量一阶惯性系统的时间常数t,t为电流从0上升到稳态值的0.632倍所需时间。有
Lab/Rab = t
联立两个式子,可以得到电机的相电阻电感。

2、磁链常数的测量

电机的反电动势为磁链的微分,可以通过测量反电动势得到磁链常数。
转动电机,使用示波器测量电机任意两相之间的反电动势。
在这里插入图片描述
测量其中一个电周期的反电动势波形的峰峰值与频率。
得到反电动势常数Ke = Vpp / 2 /sqrt(3) / f
反电动势常数定义为反电动势的有效值除以反电动势的频率
其中Vpp为反电动势的峰峰值,f为反电动势的频率单位为Hz,Ke的单位为V/Hz
要把反电动势常数转化为磁链常数,需要把V/Hz转换为WB,
转换关系为Φf = Ke /(2pi)
此时Φf为磁链常数,单位为WB

### 基于MAP方法的实现和应用 #### MAP的概念及其重要性 MAP是一种用于描述永磁同步电机(PMSM)内部场特性的工具,能够提供详细的电特性数据。这种方法通过离线测量或仿真获得一系列工作条件下的值,并将其存储在一个多维表格中。当在线运行时,控制系统可以根据当前的工作状态查询该表以获取相应的信息[^1]。 #### 实现过程 要实现基于MAP的方法,通常遵循以下几个方面: - **建模与仿真** 使用有限元分析(FEA)软件构建精确的PMSM几何模型并执行静态场计算,在不同电流角度下记录定子绕组中的变化情况。这些数据构成了后续使用的MAP的基础。 - **实验验证** 对实际物理样机进行测试,收集相同条件下产生的样本并与模拟结果对比校准,确保两者之间的一致性和准确性。 - **嵌入式系统开发** 将经过验证后的映射转换成适合实时处理的数据结构形式(如查找表),加载到微控制器单元(MCU)或其他类型的处理器上作为算法的一部分参与闭环调节过程。 ```matlab % MATLAB/Simulink 中创建简单的 MAP 查找函数示例 function psi_dq = getFluxLinkageMap(i_d, i_q) % 定义 d-q 轴上的采样点数 N_samples = 100; % 初始化矩阵 (假设已知) Psi_map = zeros(N_samples,N_samples); % 计算索引位置 idx_i_d = round((i_d - min_id)/(max_id-min_id)*N_samples)+1; idx_i_q = round((i_q - min_iq)/(max_iq-min_iq)*N_samples)+1; % 边界检查 if idx_i_d<1 || idx_i_d>N_samples || ... idx_i_q<1 || idx_i_q>N_samples error('Input currents out of range'); end % 获取对应位置处的向量 psi_dq = Psi_map(idx_i_d,idx_i_q,:); end ``` #### 应用场景 利用MAP技术可以在多个领域发挥重要作用: - **高效能驱动器设计** 提高电动车辆牵引逆变器效率的同时减少谐波失真;改善家用电器调速系统的动态响应速度等。 - **先进控制策略研发** 支持无传感器矢量控制、直接转矩控制(DTC),甚至更复杂的预测型控制方案的发展,从而增强整个传动装置的整体表现。 - **故障诊断与健康管理** 结合机器学习算法识别异常模式,提前预警潜在问题的发生,延长设备使用寿命并降低维护成本。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深入浅出说电机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值