[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-5 刚体的加速度与角加速度

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
.

食用方法
求解逻辑:速度与加速度都是在知道角速度与角加速度的前提下——旋转运动更重要
所求得的速度表达-需要考虑是否为刚体相对固定点!
旋转矩阵?转换矩阵?有什么意义和性质?——与角速度与角加速度的关系
务必自己推导全部公式,并理解每个符号的含义


5. 运动刚体的加速度与角加速度

5.1 矢量的速度与加速度

矢量的速度与加速度,不同于点的速度与加速度——描述该矢量在对应方向上的延长与收缩情况(模值的变大与减小):
对于矢量的速度而言,有:
R ⃗ V e c t o r F = [ Q M F ] R ⃗ V e c t o r M ⇒ R ⃗ ˙ V e c t o r F = [ Q ˙ M F ] R ⃗ V e c t o r M + [ Q M F ] R ⃗ ˙ V e c t o r M = [ Q M F ] R ⃗ ˙ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ V e c t o r M \vec{R}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} \\ \Rightarrow \dot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}=\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} R VectorF=[QMF]R VectorMR ˙VectorF=[Q˙MF]R VectorM+[QMF]R ˙VectorM=[QMF]R ˙VectorM+ω ~F[QMF]R VectorM
对于矢量的加速度而言,有:
R ⃗ ˙ V e c t o r F = [ Q M F ] R ⃗ ˙ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ V e c t o r M ⇒ R ⃗ ¨ V e c t o r F = [ Q ˙ M F ] R ⃗ ˙ V e c t o r M + [ Q M F ] R ⃗ ¨ V e c t o r M + ω ⃗ ~ ˙ F [ Q M F ] R ⃗ V e c t o r M + ω ⃗ ~ F [ Q ˙ M F ] R ⃗ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M ⇒ R ⃗ ¨ V e c t o r F = ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M + [ Q M F ] R ⃗ ¨ V e c t o r M + ω ⃗ ~ ˙ F [ Q M F ] R ⃗ V e c t o r M + ω ⃗ ~ F ω ⃗ ~ ˙ F [ Q M F ] R ⃗ V e c t o r M + ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M ⇒ R ⃗ ¨ V e c t o r F = a ⃗ V e c t o r F + 2 ω ⃗ ~ F v ⃗ V e c t o r F + ω ⃗ ~ ˙ F R ⃗ V e c t o r F + ω ⃗ ~ F ω ⃗ ~ F R ⃗ V e c t o r F \dot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M}+\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M}+\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{Vector}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} \\ \Rightarrow \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\vec{a}_{\mathrm{Vector}}^{F}+2\tilde{\vec{\omega}}^F\vec{v}_{\mathrm{Vector}}^{F}+\dot{\tilde{\vec{\omega}}}^F\vec{R}_{\mathrm{Vector}}^{F}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{Vector}}^{F} R ˙VectorF=[QMF]R ˙VectorM+ω ~F[QMF]R VectorMR ¨VectorF=[Q˙MF]R ˙VectorM+[QMF]R ¨VectorM+ω ~˙F[QMF]R VectorM+ω ~F[Q˙MF]R VectorM+ω ~F[QMF]R ˙VectorMR ¨VectorF=ω ~F[QMF]R ˙VectorM+[QMF]R ¨VectorM+ω ~˙F[QMF]R VectorM+ω ~Fω ~˙F[QMF]R VectorM+ω ~F[QMF]R ˙VectorMR ¨VectorF=a VectorF+2ω ~Fv VectorF+ω ~˙FR VectorF+ω ~Fω ~FR VectorF
整理可得:
R ⃗ ¨ V e c t o r F = a ⃗ V e c t o r F + 2 ω ⃗ ~ F v ⃗ V e c t o r F + α ⃗ ~ F R ⃗ V e c t o r F + ω ⃗ ~ F ω ⃗ ~ F R ⃗ V e c t o r F \ddot{\vec{R}}_{\mathrm{Vector}}^{F}=\vec{a}_{\mathrm{Vector}}^{F}+2\tilde{\vec{\omega}}^F\vec{v}_{\mathrm{Vector}}^{F}+\tilde{\vec{\alpha}}^F\vec{R}_{\mathrm{Vector}}^{F}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{Vector}}^{F} R ¨VectorF=a VectorF+2ω ~Fv VectorF+α ~FR VectorF+ω ~Fω ~FR VectorF

其中:

  • a ⃗ V e c t o r F = [ Q M F ] R ⃗ ¨ V e c t o r M \vec{a}_{\mathrm{Vector}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \ddot{\vec{R}}_{\mathrm{Vector}}^{M} a VectorF=[QMF]R ¨VectorM 运动坐标系下的矢量加速度:表示坐标系 { F } \left\{ F \right\} {F}下定义的坐标系 { M } \left\{ M \right\} {M}的矢量加速度,若矢量的模固定(不发生变化),即在坐标系 { M } \left\{ M \right\} {M}中具有固定的投影参数,则该项为 0 0 0
  • 2 ω ⃗ ~ F v ⃗ V e c t o r F = 2 ω ⃗ ~ F [ Q M F ] R ⃗ ˙ V e c t o r M 2\tilde{\vec{\omega}}^F\vec{v}_{\mathrm{Vector}}^{F}=2\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{Vector}}^{M} 2ω ~Fv VectorF=2ω ~F[QMF]R ˙VectorM科里奥利分量:其方向同时垂直于 ω ⃗ F \vec{\omega}^F ω F v ⃗ V e c t o r F \vec{v}_{\mathrm{Vector}}^{F} v VectorF
  • α ⃗ ~ F R ⃗ V e c t o r F = ω ⃗ ~ ˙ F R ⃗ V e c t o r F \tilde{\vec{\alpha}}^F\vec{R}_{\mathrm{Vector}}^{F}=\dot{\tilde{\vec{\omega}}}^F\vec{R}_{\mathrm{Vector}}^{F} α ~FR VectorF=ω ~˙FR VectorF切向分量:其方向同时垂直于 α ⃗ F \vec{\alpha}^F α F R ⃗ V e c t o r F \vec{R}_{\mathrm{Vector}}^{F} R VectorF
  • ω ⃗ ~ F ω ⃗ ~ F R ⃗ V e c t o r F \tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{Vector}}^{F} ω ~Fω ~FR VectorF法向分量:其方向为 − R ⃗ V e c t o r F -\vec{R}_{\mathrm{Vector}}^{F} R VectorF

5.2 点的速度与加速度

v ⃗ P i M = ( ω ⃗ ~ M − [ Q M F ] T [ Q ˙ M F ] ) R ⃗ P i M \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left( \tilde{\vec{\omega}}^M-\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \right) \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} v PiM=(ω ~M[QMF]T[Q˙MF])R PiM 进一步求导,可计算出其运动刚体上点 P i P_i Pi的加速度为:
v ⃗ P i F = v ⃗ M F + [ Q ˙ M F ] R ⃗ P i M + [ Q M F ] R ⃗ ˙ P i M = { v ⃗ M F + ω ⃗ ~ F [ Q M F ] R ⃗ P i M + [ Q M F ] v ⃗ P i M v ⃗ M F + [ Q M F ] ω ⃗ ~ M R ⃗ P i M + [ Q M F ] v ⃗ P i M \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{F}=\vec{v}_{\mathrm{M}}^{F}+\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}=\begin{cases} \vec{v}_{\mathrm{M}}^{F}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}\\ \vec{v}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}\\ \end{cases} v PiF=v MF+[Q˙MF]R PiM+[QMF]R ˙PiM={v MF+ω ~F[QMF]R PiM+[QMF]v PiMv MF+[QMF]ω ~MR PiM+[QMF]v PiM

  • 坐标系 { F } \left\{ F \right\} {F}下的推导:
    a ⃗ P i F = a ⃗ M F + ( ω ⃗ ~ ˙ F [ Q M F ] R ⃗ P i M + ω ⃗ ~ F [ Q ˙ M F ] R ⃗ P i M + ω ⃗ ~ F [ Q M F ] v ⃗ P i M ) + ( [ Q ˙ M F ] v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + ( α ⃗ ~ F [ Q M F ] R ⃗ P i M + ω ⃗ ~ F ω ⃗ ~ F [ Q M F ] R ⃗ P i M + ω ⃗ ~ F [ Q M F ] v ⃗ P i M ) + ( ω ⃗ ~ F [ Q M F ] v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + α ⃗ ~ F ( R ⃗ P i M ) F + ω ⃗ ~ F ω ⃗ ~ F ( R ⃗ P i M ) F + 2 ω ⃗ ~ F ( v ⃗ P i M ) F + ( a ⃗ P i M ) F \begin{aligned} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \tilde{\vec{\alpha}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\left( \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F\\ \end{aligned} a PiFa PiFa PiF=a MF+(ω ~˙F[QMF]R PiM+ω ~F[Q˙MF]R PiM+ω ~F[QMF]v PiM)+([Q˙MF]v PiM+[QMF]a PiM)=a MF+(α ~F[QMF]R PiM+ω ~Fω ~F[QMF]R PiM+ω ~F[QMF]v PiM)+(ω ~F[QMF]v PiM+[QMF]a PiM)=a MF+α ~F(R PiM)F+ω ~Fω ~F(R PiM)F+2ω ~F(v PiM)F+(a PiM)F
    P i P_i Pi为运动刚体上固定一点时,则有:
    a ⃗ P i F = a ⃗ M F + α ⃗ ~ F ( R ⃗ P i M ) F + ω ⃗ ~ F ω ⃗ ~ F ( R ⃗ P i M ) F + 2 ω ⃗ ~ F ( v ⃗ P i M ↗ 0 ) F + ( a ⃗ P i M ↗ 0 ) F = a ⃗ M F + α ⃗ ~ F ( R ⃗ P i M ) F + ω ⃗ ~ F ω ⃗ ~ F ( R ⃗ P i M ) F \begin{split} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( {\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F+\left( {\vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F \\ &=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F \end{split} a PiF=a MF+α ~F(R PiM)F+ω ~Fω ~F(R PiM)F+2ω ~F(v PiM0)F+(a PiM0)F=a MF+α ~F(R PiM)F+ω ~Fω ~F(R PiM)F
  • 坐标系 { M } \left\{ M \right\} {M}下的推导:
    a ⃗ P i F = a ⃗ M F + ( [ Q ˙ M F ] ω ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ ˙ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M R ⃗ ˙ P i M ) + ( [ Q ˙ M F ] v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + ( [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M v ⃗ P i M ) + ( [ Q M F ] ω ⃗ ~ M v ⃗ P i M + [ Q M F ] a ⃗ P i M ) ⇒ a ⃗ P i F = a ⃗ M F + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M + 2 [ Q M F ] ω ⃗ ~ M v ⃗ P i M + ( a ⃗ P i M ) F \begin{aligned} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\tilde{\vec{\omega}}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+2\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left( \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F\\ \end{aligned} a PiFa PiFa PiF=a MF+([Q˙MF]ω ~MR PiM+[QMF]ω ~˙MR PiM+[QMF]ω ~MR ˙PiM)+([Q˙MF]v PiM+[QMF]a PiM)=a MF+([QMF]ω ~Mω ~MR PiM+[QMF]α ~MR PiM+[QMF]ω ~Mv PiM)+([QMF]ω ~Mv PiM+[QMF]a PiM)=a MF+[QMF]α ~MR PiM+[QMF]ω ~Mω ~MR PiM+2[QMF]ω ~Mv PiM+(a PiM)F
    P i P_i Pi为运动刚体上固定一点时,则有:
    a ⃗ P i F = a ⃗ M F + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M + 2 [ Q M F ] ω ⃗ ~ M v ⃗ P i M ↗ 0 + ( a ⃗ P i M ↗ 0 ) F = a ⃗ M F + [ Q M F ] α ⃗ ~ M R ⃗ P i M + [ Q M F ] ω ⃗ ~ M ω ⃗ ~ M R ⃗ P i M \begin{aligned} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+2\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M{\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0}+\left( {\vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F\\ &=\vec{a}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\alpha}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\\ \end{aligned} a PiF=a MF+[QMF]α ~MR PiM+[QMF]ω ~Mω ~MR PiM+2[QMF]ω ~Mv PiM0+(a PiM0)F=a MF+[QMF]α ~MR PiM+[QMF]ω ~Mω ~MR PiM

5.2.1 欧拉角表示角加速度

ω ⃗ F = [ cos ⁡ β cos ⁡ γ − sin ⁡ γ 0 cos ⁡ β sin ⁡ γ cos ⁡ γ 0 − sin ⁡ β 0 1 ] [ α ˙ β ˙ γ ˙ ] \vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] ω F= cosβcosγcosβsinγsinβsinγcosγ0001 α˙β˙γ˙ 继续求导,可得:
ω ⃗ F = [ cos ⁡ β cos ⁡ γ − sin ⁡ γ 0 cos ⁡ β sin ⁡ γ cos ⁡ γ 0 − sin ⁡ β 0 1 ] [ α ˙ β ˙ γ ˙ ] ⇒ α ⃗ F = [ − sin ⁡ β cos ⁡ γ − cos ⁡ β sin ⁡ γ − cos ⁡ γ 0 cos ⁡ β cos ⁡ γ − sin ⁡ β sin ⁡ γ − sin ⁡ γ 0 − cos ⁡ β 0 0 ] [ α ˙ β ˙ γ ˙ ] + [ cos ⁡ β cos ⁡ γ − sin ⁡ γ 0 cos ⁡ β sin ⁡ γ cos ⁡ γ 0 − sin ⁡ β 0 1 ] [ α ¨ β ¨ γ ¨ ] \begin{split} \vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] \\ \Rightarrow \vec{\alpha}^F=\left[ \begin{matrix} -\sin \beta \cos \gamma -\cos \beta \sin \gamma& -\cos \gamma& 0\\ \cos \beta \cos \gamma -\sin \beta \sin \gamma& -\sin \gamma& 0\\ -\cos \beta& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] +\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \ddot{\alpha}\\ \ddot{\beta}\\ \ddot{\gamma}\\ \end{array} \right] \end{split} ω F= cosβcosγcosβsinγsinβsinγcosγ0001 α˙β˙γ˙ α F= sinβcosγcosβsinγcosβcosγsinβsinγcosβcosγsinγ0000 α˙β˙γ˙ + cosβcosγcosβsinγsinβsinγcosγ0001 α¨β¨γ¨

5.2.2 欧拉参数表示角加速度

结合欧拉参数对角速度的表达: [ w 1 F w 2 F w 3 F ] = 2 [ q ˙ 4 q 3 − q ˙ 3 q 4 + q ˙ 2 q 1 − q ˙ 1 q 2 q ˙ 2 q 4 − q ˙ 1 q 3 + q ˙ 4 q 2 − q ˙ 3 q 1 q ˙ 3 q 2 − q ˙ 4 q 1 + q ˙ 1 q 4 − q ˙ 2 q 3 ] \left[ \begin{array}{c} {w_1}^F\\ {w_2}^F\\ {w_3}^F\\ \end{array} \right] =2\left[ \begin{array}{c} \dot{q}_4q_3-\dot{q}_3q_4+\dot{q}_2q_1-\dot{q}_1q_2\\ \dot{q}_2q_4-\dot{q}_1q_3+\dot{q}_4q_2-\dot{q}_3q_1\\ \dot{q}_3q_2-\dot{q}_4q_1+\dot{q}_1q_4-\dot{q}_2q_3\\ \end{array} \right] w1Fw2Fw3F =2 q˙4q3q˙3q4+q˙2q1q˙1q2q˙2q4q˙1q3+q˙4q2q˙3q1q˙3q2q˙4q1+q˙1q4q˙2q3 对上式进一步求导,可得:
[ α 1 F α 2 F α 3 F ] = 2 [ q ¨ 4 q 3 − q ¨ 3 q 4 + q ¨ 2 q 1 − q ¨ 1 q 2 q ¨ 2 q 4 − q ¨ 1 q 3 + q ¨ 4 q 2 − q ¨ 3 q 1 q ¨ 3 q 2 − q ¨ 4 q 1 + q ¨ 1 q 4 − q ¨ 2 q 3 ] \left[ \begin{array}{c} {\alpha _1}^F\\ {\alpha _2}^F\\ {\alpha _3}^F\\ \end{array} \right] =2\left[ \begin{array}{c} \ddot{q}_4q_3-\ddot{q}_3q_4+\ddot{q}_2q_1-\ddot{q}_1q_2\\ \ddot{q}_2q_4-\ddot{q}_1q_3+\ddot{q}_4q_2-\ddot{q}_3q_1\\ \ddot{q}_3q_2-\ddot{q}_4q_1+\ddot{q}_1q_4-\ddot{q}_2q_3\\ \end{array} \right] α1Fα2Fα3F =2 q¨4q3q¨3q4+q¨2q1q¨1q2q¨2q4q¨1q3+q¨4q2q¨3q1q¨3q2q¨4q1+q¨1q4q¨2q3
简化为: α ⃗ F = 2 B q ⃗ ¨ F \vec{\alpha}^F=2B\ddot{\vec{q}}^F α F=2Bq ¨F,其中: B 3 × 4 = [ − q 2 q 1 − q 4 q 3 − q 3 q 4 q 1 − q 2 − q 4 − q 3 q 2 q 1 ] B_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& -q_4& q_3\\ -q_3& q_4& q_1& -q_2\\ -q_4& -q_3& q_2& q_1\\ \end{array} \right] B3×4= q2q3q4q1q4q3q4q1q2q3q2q1

5.3 欧拉参数的重要性质

根据前述定义: q ⃗ = [ s v ⃗ ] = [ cos ⁡ θ 2 → s c a l e    p a r t v ⃗ sin ⁡ θ 2 → v e c t o r    p a r t ] = [ cos ⁡ θ 2 v 1 sin ⁡ θ 2 v 2 sin ⁡ θ 2 v 3 sin ⁡ θ 2 ] = [ q 1 q 2 q 3 q 4 ] \vec{q}=\left[ \begin{array}{c} s\\ \vec{v}\\ \end{array} \right] =\left[ \begin{matrix} \cos \frac{\theta}{2}& \rightarrow scale\,\,part\\ \vec{v}\sin \frac{\theta}{2}& \rightarrow vector\,\,part\\ \end{matrix} \right] =\left[ \begin{array}{c} \cos \frac{\theta}{2}\\ v_1\sin \frac{\theta}{2}\\ v_2\sin \frac{\theta}{2}\\ v_3\sin \frac{\theta}{2}\\ \end{array} \right] =\left[ \begin{array}{c} q_1\\ q_2\\ q_3\\ q_4\\ \end{array} \right] q =[sv ]=[cos2θv sin2θscalepartvectorpart]= cos2θv1sin2θv2sin2θv3sin2θ = q1q2q3q4 B 3 × 4 = [ − q 2 q 1 − q 4 q 3 − q 3 q 4 q 1 − q 2 − q 4 − q 3 q 2 q 1 ] B_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& -q_4& q_3\\ -q_3& q_4& q_1& -q_2\\ -q_4& -q_3& q_2& q_1\\ \end{array} \right] B3×4= q2q3q4q1q4q3q4q1q2q3q2q1 B ˉ 3 × 4 = [ − q 2 q 1 q 4 − q 3 − q 3 − q 4 q 1 q 2 − q 4 q 3 − q 2 q 1 ] \bar{B}_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& q_4& -q_3\\ -q_3& -q_4& q_1& q_2\\ -q_4& q_3& -q_2& q_1\\ \end{array} \right] Bˉ3×4= q2q3q4q1q4q3q4q1q2q3q2q1 , 总结其一些有用的性质,进而便于简化运动学与动力学方程:

{ B B T = B ˉ B ˉ T = E B T B = B ˉ T B ˉ = E 4 × 4 − q ⃗ q ⃗ T \begin{cases} BB^{\mathrm{T}}=\bar{B}\bar{B}^{\mathrm{T}}=E\\ B^{\mathrm{T}}B=\bar{B}^{\mathrm{T}}\bar{B}=E_{4\times 4}-\vec{q}\vec{q}^{\mathrm{T}}\\ \end{cases} {BBT=BˉBˉT=EBTB=BˉTBˉ=E4×4q q T

{ B q ⃗ = B ˉ T q ⃗ = 0 B ˙ q ⃗ = B ˉ ˙ T q ⃗ = 0 B B ˉ ˙ T = B ˙ B ˉ T \begin{cases} B\vec{q}=\bar{B}^{\mathrm{T}}\vec{q}=0\\ \dot{B}\vec{q}=\dot{\bar{B}}^{\mathrm{T}}\vec{q}=0\\ B\dot{\bar{B}}^{\mathrm{T}}=\dot{B}\bar{B}^{\mathrm{T}}\\ \end{cases} Bq =BˉTq =0B˙q =Bˉ˙Tq =0BBˉ˙T=B˙BˉT

{ 2 B ˙ B T = − 2 B B ˙ T = ω ⃗ ~ F 2 B ˉ B ˉ ˙ T = − 2 B ˉ ˙ B ˉ T = ω ⃗ ~ M \begin{cases} 2\dot{B}B^{\mathrm{T}}=-2B\dot{B}^{\mathrm{T}}=\tilde{\vec{\omega}}^F\\ 2\bar{B}\dot{\bar{B}}^{\mathrm{T}}=-2\dot{\bar{B}}\bar{B}^{\mathrm{T}}=\tilde{\vec{\omega}}^M\\ \end{cases} 2B˙BT=2BB˙T=ω ~F2BˉBˉ˙T=2Bˉ˙BˉT=ω ~M

{ B q ⃗ ˙ = − B ˙ q ⃗ B ˉ q ⃗ ˙ = − B ˉ ˙ q ⃗ \begin{cases} B\dot{\vec{q}}=-\dot{B}\vec{q}\\ \bar{B}\dot{\vec{q}}=-\dot{\bar{B}}\vec{q}\\ \end{cases} {Bq ˙=B˙q Bˉq ˙=Bˉ˙q

{ q ⃗ T q ⃗ = 1 q ⃗ ˙ T q ⃗ = 0 \begin{cases} \vec{q}^{\mathrm{T}}\vec{q}=1\\ \dot{\vec{q}}^{\mathrm{T}}\vec{q}=0\\ \end{cases} {q Tq =1q ˙Tq =0

考虑存在如下的旋转变换关系 : [ Q M F ] = [ Q A F ] [ Q M A ] \left[ Q_{\mathrm{M}}^{F} \right] =\left[ Q_{\mathrm{A}}^{F} \right] \left[ Q_{\mathrm{M}}^{A} \right] [QMF]=[QAF][QMA] , 各旋转矩阵对应的欧拉参数分别为: q ⃗ → M F , q ⃗ → A F , q ⃗ → M A \vec{q}_{\rightarrow \mathrm{M}}^{F},\vec{q}_{\rightarrow \mathrm{A}}^{F},\vec{q}_{\rightarrow \mathrm{M}}^{A} q MF,q AF,q MA,则存在如下转换关系:
q ⃗ → M F = [ q 1 F → M q 2 F → M q 3 F → M q 4 F → M ] = D q ⃗ → M A = [ − q 1 F → A q 2 F → A q 3 F → A q 4 F → A − q 2 F → A − q 1 F → A q 4 F → A − q 3 F → A − q 3 F → A − q 4 F → A − q 1 F → A q 2 F → A − q 4 F → A q 3 F → A − q 2 F → A − q 1 F → A ] [ q 1 A → M q 2 A → M q 3 A → M q 4 A → M ] , D = [ − q 1 F → A q 2 F → A q 3 F → A q 4 F → A − q 2 F → A − q 1 F → A q 4 F → A − q 3 F → A − q 3 F → A − q 4 F → A − q 1 F → A q 2 F → A − q 4 F → A q 3 F → A − q 2 F → A − q 1 F → A ] \vec{q}_{\rightarrow \mathrm{M}}^{F}=\left[ \begin{array}{c} q_{1}^{F\rightarrow M}\\ q_{2}^{F\rightarrow M}\\ q_{3}^{F\rightarrow M}\\ q_{4}^{F\rightarrow M}\\ \end{array} \right] =D\vec{q}_{\rightarrow \mathrm{M}}^{A}=\left[ \begin{matrix} -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& q_{4}^{F\rightarrow A}\\ -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{4}^{F\rightarrow A}& -q_{3}^{F\rightarrow A}\\ -q_{3}^{F\rightarrow A}& -q_{4}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}\\ -q_{4}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}\\ \end{matrix} \right] \left[ \begin{array}{c} q_{1}^{A\rightarrow M}\\ q_{2}^{A\rightarrow M}\\ q_{3}^{A\rightarrow M}\\ q_{4}^{A\rightarrow M}\\ \end{array} \right] ,D=\left[ \begin{matrix} -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& q_{4}^{F\rightarrow A}\\ -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{4}^{F\rightarrow A}& -q_{3}^{F\rightarrow A}\\ -q_{3}^{F\rightarrow A}& -q_{4}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}& q_{2}^{F\rightarrow A}\\ -q_{4}^{F\rightarrow A}& q_{3}^{F\rightarrow A}& -q_{2}^{F\rightarrow A}& -q_{1}^{F\rightarrow A}\\ \end{matrix} \right] q MF= q1FMq2FMq3FMq4FM =Dq MA= q1FAq2FAq3FAq4FAq2FAq1FAq4FAq3FAq3FAq4FAq1FAq2FAq4FAq3FAq2FAq1FA q1AMq2AMq3AMq4AM ,D= q1FAq2FAq3FAq4FAq2FAq1FAq4FAq3FAq3FAq4FAq1FAq2FAq4FAq3FAq2FAq1FA

  • 37
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LiongLoure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值