评测工作完成后,经常会面对各方的问题,如
你的数据质量可靠么?
数据质量偏差有多大?
虽然可以用抽查数据准确率来说明,不过,因为数据抽查也是评测人员来做,不是第三方的人来验证,所以也不能说,这个数据准确率真的就是正确的。
上面的问题,可以通过统计中数据显著性检验来解决。具体的解决方法,我边学习边整理
统计的显著性检验以及实验的错误率分析
本节介绍一下统计中最常见的两个概念:方差、标准方差
方差:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;
标准方差 or 标准差:样本方差的算术平方根叫做样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
标准差这个特征量数对于完整、全面地认识数据分布特点是重要的,特别是遇到比较两个次数分布时,我们不仅要从集中趋势的角度而且还要从离中趋势的角度去分析比较。但上述的标准差量数并不是在任何情况下都可以直接应用,特别是下面两种情形,就不好直接使用上述具有单位的绝对意义的标准差量数。其一,两个次数分布的数据在测量单位上是不同的。例如,测量身高用“厘米”作单位,测量体重用“千克”作单位,则这两种数据分布的标准差量数不能直接比较。再如,男生的身高用“米”作单位,女生的身高用“厘米”作单位,则男女生身高数据的标准差也不能比较。其二,在一些特别场合下,尽管两组数据的测量单位相同,但两组数据的平均数相差太大,则这两组数据的标准差量数一般也不宜直接比较。例如,研究幼儿园大班小朋友的体重差异程度(用“千克”作单位)和离退休职工体重差异程度(也用“千克”作单位)。尽管所用单位相同,但由于来自这两个特殊群体的体重测量数据,在数量上存在很悬殊的差异,因而,可以想象,离退休职工的平均体重远远大于幼儿园大班小朋友的平均体重。此时若用上述的标准差量数来比较两组数据的离散程度,是不够合理的。需要用差异系数来表示。
方差和标准方差的计算公式,在网上一搜就有,很方便。实际使用上,其实不用人工计算,spss本身就可以自动计算了。不用单独计算,很方便的