【高等数学】定积分2

本文还有第一部分,包含定积分的概念与性质、微积分的基本公式、定积分的换元法和分部积分法

反常积分

一、无穷限的反常积分

定义1:设函数 f ( x ) f(x) f(x)在区间 [ a , + ∞ ) [a,+\infty) [a,+)上连续,如果极限 lim ⁡ t → + ∞ ∫ a t f ( x ) d x \lim_{t\to+\infty}\int^t_af(x)dx limt+atf(x)dx存在,那么称反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx收敛,并称此极限为该反常积分的值;如果极限 lim ⁡ t → + ∞ ∫ a t f ( x ) d x \lim_{t\to+\infty}\int^t_af(x)dx limt+atf(x)dx不存在,那么称反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx发散

定义2:设函数 f ( x ) f(x) f(x)在区间 ( − ∞ , b ] (-\infty,b] (,b]上连续,如果极限 lim ⁡ t → + ∞ ∫ t b f ( x ) d x \lim_{t\to+\infty}\int^b_tf(x)dx limt+tbf(x)dx存在,那么称反常积分 ∫ − ∞ b f ( x ) d x \int^b_{-\infty}f(x)dx bf(x)dx收敛,并称此极限为该反常积分的值;如果极限 lim ⁡ t → + ∞ ∫ t b f ( x ) d x \lim_{t\to+\infty}\int^b_tf(x)dx limt+tbf(x)dx不存在,那么称反常积分 ∫ − ∞ b f ( x ) d x \int^b_{-\infty}f(x)dx bf(x)dx发散

定义3:设函数 f ( x ) f(x) f(x)在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上连续,如果反常积分 ∫ − ∞ 0 f ( x ) d x \int^0_{-\infty}f(x)dx 0f(x)dx与反常积分 ∫ 0 + ∞ f ( x ) d x \int^{+\infty}_0f(x)dx 0+f(x)dx均收敛,那么反常积分 ∫ − ∞ + ∞ f ( x ) d x \int^{+\infty}_{-\infty}f(x)dx +f(x)dx收敛,并称反常积分 ∫ − ∞ 0 f ( x ) d x \int^0_{-\infty}f(x)dx 0f(x)dx与反常积分 ∫ 0 + ∞ f ( x ) d x \int^{+\infty}_0f(x)dx 0+f(x)dx的值之和为反常积分 ∫ − ∞ + ∞ f ( x ) d x \int^{+\infty}_{-\infty}f(x)dx +f(x)dx的值,否则就称反常积分 ∫ − ∞ + ∞ f ( x ) d x \int^{+\infty}_{-\infty}f(x)dx +f(x)dx发散
根据定义3, ∫ − ∞ + ∞ x d x = 0 \int^{+\infty}_{-\infty}xdx=0 +xdx=0是错误的,因为 ∫ − ∞ 0 x d x = ∞ , ∫ 0 + ∞ x d x = ∞ \int^0_{-\infty}xdx=\infty,\int^{+\infty}_0xdx=\infty 0xdx=,0+xdx=

例1:计算反常积分 ∫ − ∞ + ∞ d x 1 + x 2 \int^{+\infty}_{-\infty}\frac{dx}{1+x^2} +1+x2dx
∫ − ∞ + ∞ = ∫ − ∞ 0 + ∫ 0 + ∞ \int^{+\infty}_{-\infty}=\int^0_{-\infty}+\int^{+\infty}_0 +=0+0+
∫ − ∞ 0 1 1 + x 2 d x = arctan ⁡ x ∣ − ∞ 0 = π 2 \int^0_{-\infty}\frac1{1+x^2}dx=\arctan x\Big|^0_{-\infty}=\frac\pi2 01+x21dx=arctanx 0=2π
∫ 0 + ∞ 1 1 + x 2 d x = arctan ⁡ x ∣ 0 + ∞ = π 2 \int^{+\infty}_0\frac1{1+x^2}dx=\arctan x\Big|^{+\infty}_0=\frac\pi2 0+1+x21dx=arctanx 0+=2π
因此 ∫ − ∞ + ∞ d x 1 + x 2 = π \int^{+\infty}_{-\infty}\frac{dx}{1+x^2}=\pi +1+x2dx=π

幂函数的反常积分结论无穷型

反常积分 ∫ a + ∞ d x x p ( a > 0 ) \int^{+\infty}_a\frac{dx}{x^p}\quad(a>0) a+xpdx(a>0),当 p > 1 p>1 p>1时收敛,当 p ≤ 1 p\leq1 p1时发散
证明:
p = 1 p=1 p=1时, ∫ a + ∞ d x x = ln ⁡ x ∣ a + ∞ = + ∞ \int^{+\infty}_a\frac{dx}x=\ln x|^{+\infty}_a=+\infty a+xdx=lnxa+=+,发散
p ≠ 1 p\ne1 p=1
∫ a + ∞ d x x p = ∫ a + ∞ x − p d x = x 1 − p 1 − p ∣ a + ∞ = lim ⁡ x → + ∞ x 1 − p 1 − p − a 1 − p 1 − p = { ∞ , p < 1 a 1 − p 1 − p , p > 1 \begin{aligned}\int^{+\infty}_a\frac{dx}{x^p}&=\int^{+\infty}_{a}x^{-p}dx\\&=\frac{x^{1-p}}{1-p}\Big|^{+\infty}_a\\&=\lim_{x\to+\infty}\frac{x^{1-p}}{1-p}-\frac{a^{1-p}}{1-p}\\&=\left\{\begin{aligned}&\infty,p<1\\&\frac{a^{1-p}}{1-p},p>1\end{aligned}\right.\end{aligned} a+xpdx=a+xpdx=1px1p a+=x+lim1px1p1pa1p= ,p<11pa1p,p>1
故当 p > 1 p>1 p>1时收敛,当 p ≤ 1 p\leq1 p1时发散

无界函数的反常积分

定义1:设函数 f ( x ) f(x) f(x)在区间 ( a , b ] (a,b] (a,b]上连续,点 a a a f ( x ) f(x) f(x)的瑕点,如果极限 lim ⁡ t → a + ∫ t b f ( x ) d x \lim_{t\to a^+}\int^b_t f(x)dx limta+tbf(x)dx存在,那么称反常积分 ∫ a b f ( x ) d x \int^b_a f(x)dx abf(x)dx收敛,并称此极限为该反常积分的值;如果极限 lim ⁡ t → a + ∫ t b f ( x ) d x \lim_{t\to a^+}\int^b_t f(x)dx limta+tbf(x)dx不存在,那么称反常积分 ∫ a b f ( x ) d x \int^b_a f(x)dx abf(x)dx发散

定义2:设函数 f ( x ) f(x) f(x)在区间 [ a , b ) [a,b) [a,b)上连续,点 b b b f ( x ) f(x) f(x)的瑕点,如果极限 lim ⁡ t → b − ∫ a t f ( x ) d x \lim_{t\to b^-}\int^t_a f(x)dx limtbatf(x)dx存在,那么称反常积分 ∫ a b f ( x ) d x \int^b_a f(x)dx abf(x)dx收敛,并称此极限为该反常积分的值;如果极限 lim ⁡ t → b − ∫ a t f ( x ) d x \lim_{t\to b^-}\int^t_a f(x)dx limtbatf(x)dx不存在,那么称反常积分 ∫ a b f ( x ) d x \int^b_a f(x)dx abf(x)dx发散

定义3:设函数 f ( x ) f(x) f(x)在区间 [ a , c ) [a,c) [a,c)及区间 ( c , b ] (c,b] (c,b]上连续,点 c c c f ( x ) f(x) f(x)的瑕点,如果反常积分 ∫ a c f ( x ) d x \int^c_af(x)dx acf(x)dx与反常积分 ∫ c b f ( x ) d x \int^b_cf(x)dx cbf(x)dx均收敛,那么称反常积分 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx收敛,并称反常积分 ∫ a c f ( x ) d x \int^c_af(x)dx acf(x)dx的值与反常积分 ∫ c b f ( x ) d x \int^b_cf(x)dx cbf(x)dx的值之和为反常积分 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx的值,否则,就称反常积分 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx发散
根据定义3: ∫ − 1 1 1 x d x = 0 \int^1_{-1}\frac1xdx=0 11x1dx=0是错误的,因为 ∫ 0 1 1 x d x = ln ⁡ x ∣ 0 1 = ∞ \int^1_0\frac1xdx=\ln x|^1_0=\infty 01x1dx=lnx01=

例2:讨论反常积分 ∫ − 1 1 d x x 2 \int^1_{-1}\frac{dx}{x^2} 11x2dx的收敛性
注意此处不满足幂函数的反常积分结论1的条件
∫ − 1 1 = ∫ − 1 0 + ∫ 0 1 \int^1_{-1}=\int^0_{-1}+\int^1_0 11=10+01
∫ 0 1 1 x 2 d x = − 1 x ∣ 0 1 = − 1 + lim ⁡ x → 0 + 1 x = ∞ \int^1_0\frac1{x^2}dx=-\frac1x|^1_0=-1+\lim_{x\to0^+}\frac1x=\infty 01x21dx=x101=1+limx0+x1=
故反常积分 ∫ − 1 1 d x x 2 \int^1_{-1}\frac{dx}{x^2} 11x2dx发散

幂函数的反常积分结论瑕点型

反常积分 ∫ a b d x ( x − a ) q \int^b_a\frac{dx}{(x-a)^q} ab(xa)qdx 0 < q < 1 0<q<1 0<q<1时收敛,当 q ≥ 1 q\geq1 q1时发散
证明:
q = 1 q=1 q=1时, ∫ a b d x x − a = ln ⁡ ( x − a ) ∣ a b = ln ⁡ ( b − a ) − lim ⁡ x → a + ln ⁡ ( x − a ) \int^b_a\frac{dx}{x-a}=\ln(x-a)|^b_a=\ln(b-a)-\lim_{x\to a^+}\ln(x-a) abxadx=ln(xa)ab=ln(ba)limxa+ln(xa),发散
q ≠ 1 q\ne1 q=1
∫ a b d x ( x − a ) q = ∫ a b ( x − a ) − q d x = ( x − a ) 1 − q 1 − q ∣ a b = ( b − a ) 1 − q 1 − q − lim ⁡ x → a + ( x − a ) 1 − q 1 − q = { ( b − a ) 1 − q 1 − q , 0 < q < 1 ∞ , q > 1 \begin{aligned}\int^b_a\frac{dx}{(x-a)^q}&=\int^b_a(x-a)^{-q}dx\\&=\frac{(x-a)^{1-q}}{1-q}\Big|^b_a\\&=\frac{(b-a)^{1-q}}{1-q}-\lim_{x\to a^+}\frac{(x-a)^{1-q}}{1-q}\\&=\left\{\begin{aligned}&\frac{(b-a)^{1-q}}{1-q},0<q<1\\&\infty,q>1\end{aligned}\right.\end{aligned} ab(xa)qdx=ab(xa)qdx=1q(xa)1q ab=1q(ba)1qxa+lim1q(xa)1q= 1q(ba)1q,0<q<1,q>1
证毕

例3:求反常积分 ∫ 0 + ∞ d x x ( x + 1 ) 3 \int^{+\infty}_0\frac{dx}{\sqrt{x(x+1)^3}} 0+x(x+1)3 dx
法1
观察到分母是 x 2 x^2 x2,分子是 x 0 x^0 x0所以考虑倒代换
x = 1 t , d x = − 1 t 2 d t x=\frac1t,dx=-\frac1{t^2}dt x=t1,dx=t21dt
∫ 0 + ∞ d x x ( x + 1 ) 3 = ∫ 0 + ∞ 1 ( 1 + t ) 3 2 d t = ( 1 + t ) − 1 2 − 1 2 ∣ 0 + ∞ = 0 + 2 = 2 \begin{aligned}\int^{+\infty}_0\frac{dx}{\sqrt{x(x+1)^3}}&=\int^{+\infty}_0\frac1{(1+t)^{\frac32}}dt\\&=\frac{(1+t)^{-\frac12}}{-\frac12}\Big|^{+\infty}_0\\&=0+2=2\end{aligned} 0+x(x+1)3 dx=0+(1+t)231dt=21(1+t)21 0+=0+2=2
法2
分母有根式,而且不容易积出来,考虑根式换元
x = t , d x = 2 t d t \sqrt x=t,dx=2tdt x =t,dx=2tdt
∫ 0 + ∞ d x x ( x + 1 ) 3 = 2 ∫ 0 + ∞ 1 ( t 2 + 1 ) 3 2 d t \begin{aligned}\int^{+\infty}_0\frac{dx}{\sqrt{x(x+1)^3}}&=2\int^{+\infty}_0\frac1{(t^2+1)^\frac32}dt\end{aligned} 0+x(x+1)3 dx=20+(t2+1)231dt
t = tan ⁡ u , d t = sec ⁡ 2 u d u t=\tan u,dt=\sec^2udu t=tanu,dt=sec2udu
上式 = 2 ∫ 0 π 2 cos ⁡ u d u = 2 sin ⁡ u ∣ 0 π 2 = 2 \begin{aligned}=2\int^{\frac\pi2}_0\cos udu=2\sin u|^{\frac\pi2}_0=2\end{aligned} =202πcosudu=2sinu02π=2

反常积分审敛法

一、无穷限反常积分审敛法

定理1:设函数 f ( x ) f(x) f(x)在区间 [ a , + ∞ ) [a,+\infty) [a,+)上连续,且 f ( x ) ≥ 0 f(x)\geq0 f(x)0,若函数 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int^x_0f(t)dt F(x)=0xf(t)dt [ a , + ∞ ) [a,+\infty) [a,+)上有上界,则反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx收敛
证明:
∵ f ( x ) ≥ 0 \because f(x)\geq0 f(x)0 F ( x ) F(x) F(x)单调递增
∵ F ( x ) \because F(x) F(x) [ a , + ∞ ) [a,+\infty) [a,+)有上界
由单调有界准则知, lim ⁡ x → ∞ F ( x ) \lim_{x\to\infty}F(x) limxF(x)有极限
证毕
定理2(比较审敛原理):设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在区间 [ a , + ∞ ) [a,+\infty) [a,+)上连续,如果 0 ≤ f ( x ) ≤ g ( x ) ( a ≤ x < + ∞ ) 0\leq f(x)\leq g(x)\quad(a\leq x<+\infty) 0f(x)g(x)(ax<+),并且 ∫ a + ∞ g ( x ) d x \int^{+\infty}_ag(x)dx a+g(x)dx收敛,那么 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx也收敛;如果 0 ≤ g ( x ) ≤ f ( x ) ( a ≤ x < + ∞ ) 0\leq g(x)\leq f(x)\quad(a\leq x<+\infty) 0g(x)f(x)(ax<+),并且 ∫ a + ∞ g ( x ) d x \int^{+\infty}_ag(x)dx a+g(x)dx发散,那么 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx也发散
证明:
∵ 0 ≤ f ( x ) ≤ g ( x ) \because 0\leq f(x)\leq g(x) 0f(x)g(x)
a ≤ t ≤ + ∞ a\leq t\leq+\infty at+
∫ a t f ( x ) d x ≤ ∫ a t g ( x ) d x ≤ ∫ a + ∞ g ( x ) d x \int^t_af(x)dx\leq\int^t_ag(x)dx\leq\int^{+\infty}_ag(x)dx atf(x)dxatg(x)dxa+g(x)dx
∵ ∫ a t f ( x ) d x \because \int^t_af(x)dx atf(x)dx有上界
由定理1和反常积分收敛
定理3(比较审敛法1):设函数 f ( x ) f(x) f(x) [ a , + ∞ ) ( a > 0 ) [a,+\infty)\quad(a>0) [a,+)(a>0)上连续,且 f ( x ) ≥ 0 f(x)\geq0 f(x)0,如果存在常数 M > 0 M>0 M>0 p > 1 p>1 p>1,使得 f ( x ) ≤ M x p ( a ≤ x < + ∞ ) f(x)\leq\frac M{x^p}\quad(a\leq x<+\infty) f(x)xpM(ax<+),那么反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx;如果存在常数 N > 0 N>0 N>0,使得 f ( x ) ≥ N x ( a ≤ x < + ∞ ) f(x)\geq\frac Nx\quad(a\leq x<+\infty) f(x)xN(ax<+),那么反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_a f(x)dx a+f(x)dx发散
例1:判定反常积分 ∫ 1 + ∞ d x x 4 + 1 3 \int^{+\infty}_1\frac{dx}{\sqrt[3]{x^4+1}} 1+3x4+1 dx的收敛性
0 < 1 x 4 + 1 3 < 1 x 4 3 = 1 x 4 3 0<\frac1{\sqrt[3]{x^4+1}}<\frac1{\sqrt[3]{x^4}}=\frac1{x^{\frac43}} 0<3x4+1 1<3x4 1=x341
∫ 1 + ∞ d x x 4 + 1 3 \int^{+\infty}_1\frac{dx}{\sqrt[3]{x^4+1}} 1+3x4+1 dx收敛
定理4(极限审敛法1):设函数 f ( x ) f(x) f(x)在区间 [ a , + ∞ ) [a,+\infty) [a,+)上连续,且 f ( x ) ≥ 0 f(x)\geq0 f(x)0,如果存在常数 p > 1 p>1 p>1,使得 lim ⁡ x → + ∞ x p f ( x ) = c < + ∞ \lim_{x\to+\infty}x^pf(x)=c<+\infty limx+xpf(x)=c<+,那么反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx收敛;如果 lim ⁡ x → + ∞ x f ( x ) = d > 0 \lim_{x\to+\infty}xf(x)=d>0 limx+xf(x)=d>0(或 lim ⁡ x → + ∞ x f ( x ) = + ∞ \lim_{x\to+\infty}xf(x)=+\infty limx+xf(x)=+),那么反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx发散
证明:
lim ⁡ x → + ∞ x p f ( x ) = lim ⁡ x → + ∞ f ( x ) 1 x p = c \lim_{x\to+\infty}x^pf(x)=\lim_{x\to+\infty}\frac{f(x)}{\frac1{x^p}}=c limx+xpf(x)=limx+xp1f(x)=c,显然 f ( x ) f(x) f(x) 1 x p \frac1{x^p} xp1敛散性相同, 1 x p \frac1{x^p} xp1收敛,因此 f ( x ) f(x) f(x)收敛
例2:判定反常积分 ∫ 1 + ∞ d x x 1 + x 2 \int^{+\infty}_1\frac{dx}{x\sqrt{1+x^2}} 1+x1+x2 dx的收敛性
lim ⁡ x → + ∞ x 2 1 x 1 + x 2 = lim ⁡ x → + ∞ 1 1 x 2 + 1 = 1 \lim_{x\to+\infty}x^2\frac1{x\sqrt{1+x^2}}=\lim_{x\to+\infty}\frac1{\sqrt{\frac1{x^2}+1}}=1 limx+x2x1+x2 1=limx+x21+1 1=1(此处 x 2 x^2 x2是根据 x 1 + x 2 x\sqrt{1+x^2} x1+x2 凑出来的)
∵ p = 2 > 1 \because p=2>1 p=2>1
∴ \therefore 收敛
证毕
例3:判定反常积分 ∫ 1 + ∞ x 3 2 1 + x 2 d x \int^{+\infty}_1\frac{x^\frac32}{1+x^2}dx 1+1+x2x23dx的收敛性
lim ⁡ x → + ∞ x 1 2 ⋅ x 3 2 1 + x 2 = lim ⁡ x → + ∞ x 3 2 1 + x 2 1 x 1 2 = 1 \begin{aligned}\lim_{x\to+\infty}x^\frac12\cdot\frac{x^\frac32}{1+x^2}=\lim_{x\to+\infty}\frac{\frac{x^\frac32}{1+x^2}}{\frac1{x^\frac12}}=1\end{aligned} x+limx211+x2x23=x+limx2111+x2x23=1
∵ ∫ 1 + ∞ 1 x 1 2 d x \because\int^{+\infty}_1\frac1{x^\frac12}dx 1+x211dx发散
∫ 1 + ∞ x 3 2 1 + x 2 d x \int^{+\infty}_1\frac{x^\frac32}{1+x^2}dx 1+1+x2x23dx发散(不一定必须要乘 x x x来证明发散
定理5:设函数 f ( x ) f(x) f(x)在区间 [ a , + ∞ ) [a,+\infty) [a,+)上连续,如果反常积分 ∫ a + ∞ ∣ f ( x ) ∣ d x \int^{+\infty}_a|f(x)|dx a+f(x)dx收敛,那么反常积分 ∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx也收敛
证明:
ϕ ( x ) = 1 2 [ f ( x ) + ∣ f ( x ) ∣ ] \phi(x)=\frac12[f(x)+|f(x)|] ϕ(x)=21[f(x)+f(x)]
ϕ ≥ 0 \phi\geq0 ϕ0 ϕ ≤ ∣ f ( x ) ∣ \phi\leq|f(x)| ϕf(x)
∵ ∫ a + ∞ ∣ f ( x ) ∣ d x \because\int^{+\infty}_a|f(x)|dx a+f(x)dx收敛
由比较审敛法知, ∫ a + ∞ ϕ ( x ) d x \int^{+\infty}_a\phi(x)dx a+ϕ(x)dx收敛
∵ f ( x ) = 2 ϕ ( x ) − ∣ f ( x ) ∣ \because f(x)=2\phi(x)-|f(x)| f(x)=2ϕ(x)f(x)
∴ ∫ a + ∞ f ( x ) d x = 2 ∫ a + ∞ ϕ d x − ∫ a + ∞ ∣ f ( x ) ∣ d x \therefore\int^{+\infty}_af(x)dx=2\int^{+\infty}_a\phi dx-\int^{+\infty}_a|f(x)|dx a+f(x)dx=2a+ϕdxa+f(x)dx
∫ a + ∞ f ( x ) d x \int^{+\infty}_af(x)dx a+f(x)dx收敛
证毕

二、无界函数的反常积分的审敛法

定理6(比较审敛法2):设函数 f ( x ) f(x) f(x)在区间 ( a , b ] (a,b] (a,b]上连续,且 f ( x ) ≥ 0 , x = a f(x)\geq0,x=a f(x)0x=a f ( x ) f(x) f(x)的瑕点,如果存在常数 M > 0 M>0 M>0 q < 1 q<1 q<1,使得 f ( x ) ≤ M ( x − a ) q ( a < x ≤ b ) f(x)\leq\frac M{(x-a)^q}\quad(a<x\leq b) f(x)(xa)qM(a<xb),那么反常积分 ∫ a b f ( x ) d x \int^b_a f(x)dx abf(x)dx收敛;如果存在常数 N > 0 N>0 N>0,使得 f ( x ) ≥ N x − a ( a < x ≤ b ) f(x)\geq\frac N{x-a}\quad(a<x\leq b) f(x)xaN(a<xb)那么反常积分 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx发散
定理7(极限审敛法2):设函数 f ( x ) f(x) f(x)在区间 ( a , b ] (a,b] (a,b]上连续,且 f ( x ) ≥ 0 f(x)\geq0 f(x)0 x = a x=a x=a f ( x ) f(x) f(x)的瑕点,如果存在常数 0 < q < 1 0<q<1 0<q<1,使得 lim ⁡ x → a + ( x − a ) q f ( x ) \lim_{x\to a^+}(x-a)^qf(x) limxa+(xa)qf(x)存在,那么反常积分 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx收敛;如果 lim ⁡ x → a + ( x − a ) f ( x ) = d > 0 \lim_{x\to a^+}(x-a)f(x)=d>0 limxa+(xa)f(x)=d>0(或 lim ⁡ x → a + ( x − a ) f ( x ) = + ∞ \lim_{x\to a^+}(x-a)f(x)=+\infty limxa+(xa)f(x)=+),那么反常积分 ∞ a b f ( x ) d x \infty^b_af(x)dx abf(x)dx发散
例4:判定反常积分 ∫ 0 1 1 x sin ⁡ 1 x d x \int^1_0\frac1{\sqrt x}\sin\frac1xdx 01x 1sinx1dx的收敛性
∣ 1 x ⋅ sin ⁡ 1 x ∣ ≤ ∣ 1 x ∣ = 1 x 1 2 |\frac1{\sqrt x}\cdot\sin \frac1x|\leq|\frac1{\sqrt x}|=\frac1{x^\frac12} x 1sinx1x 1=x211
∵ ∫ 0 1 1 x d x \because\int^1_0\frac1{\sqrt x}dx 01x 1dx收敛
根据比较审敛法知, ∫ 0 1 ∣ 1 x ⋅ sin ⁡ 1 x ∣ d x \int^1_0|\frac1{\sqrt x}\cdot\sin \frac1x|dx 01x 1sinx1dx收敛
根据定理5, ∫ 0 1 1 x sin ⁡ 1 x d x \int^1_0\frac1{\sqrt x}\sin\frac1xdx 01x 1sinx1dx收敛

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值