【高等数学】定积分1

本文还有第二部分,包含反常积分、反常积分审敛法

定积分的概念与性质

一、定积分的定义

设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有界,在 [ a , b ] [a,b] [a,b]中任意插入若干个分点,把区间 [ a , b ] [a,b] [a,b]分成 n n n个小区间 a = x 0 < x 1 < x 2 < ⋯ < x n − 1 < x n = b a=x_0<x_1<x_2<\cdots<x_{n-1}<x_n=b a=x0<x1<x2<<xn1<xn=b,各个小区间的长度依次为 Δ x 1 = x 1 − x 0 , Δ x 2 = x 2 − x 1 , ⋅ , Δ x n = x n − x n − 1 \Delta x_1=x_1-x_0,\Delta x_2=x_2-x_1,\cdot,\Delta x_n=x_n-x_{n-1} Δx1=x1x0,Δx2=x2x1,,Δxn=xnxn1;(区间分段)
在每个小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi]上任取一点 ξ i ( x i − 1 < ξ i < x i ) \xi_i(x_{i-1}<\xi_i<x_i) ξi(xi1<ξi<xi),作函数值 f ( ξ i ) f(\xi_i) f(ξi)与小区间长度 Δ x i \Delta x_i Δxi乘积 f ( ξ i ) Δ x i ( i = 1 , 2 , ⋅ , n ) f(\xi_i)\Delta x_i(i=1,2,\cdot,n) f(ξi)Δxi(i=1,2,,n)并作出和 S = ∑ i = 1 n f ( ξ i ) Δ x i S=\sum^n_{i=1}f(\xi_i)\Delta x_i S=i=1nf(ξi)Δxi,记 λ = max ⁡ { Δ x 1 , Δ x 2 , ⋯   , Δ x n } \lambda=\max\{\Delta x_1,\Delta x_2,\cdots,\Delta x_n\} λ=max{Δx1,Δx2,,Δxn}(每一段再求和)
如果当 λ → 0 \lambda\to0 λ0,若极限 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i)\Delta x_i limλ0i=1nf(ξi)Δxi存在,且此极限值既不依赖于区间 [ a , b ] [a,b] [a,b]的分法,也不依赖于点 ξ i \xi_i ξi的取法,则称 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上可积,并称此极限为 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上的定积分,记作 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx,即 ∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ t = 1 n f ( ξ i ) Δ x i \int^b_af(x)dx=\lim_{\lambda\to0}\sum^n_{t=1}f(\xi_i)\Delta x_i abf(x)dx=λ0limt=1nf(ξi)Δxi其中 f ( x ) f(x) f(x)叫做被积函数, f ( x ) d x f(x)dx f(x)dx叫做被积表达式, x x x叫做积分变量, a a a叫做积分下限, b b b叫做积分上限, [ a , b ] [a,b] [a,b]叫做积分区间(取极限)

二、定积分的几何意义

  • ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx存在,若在 [ a , b ] [a,b] [a,b] f ( x ) ≥ 0 f(x)\geq0 f(x)0,则 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx的值等于以曲线 y = f ( x ) , x = a , x = b y=f(x),x=a,x=b y=f(x),x=a,x=b x x x轴所围成的曲边梯形的面积
  • ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx存在,若在 [ a , b ] [a,b] [a,b] f ( x ) ≤ 0 f(x)\leq0 f(x)0,则 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx的值等于以曲线 y = f ( x ) , x = a , x = b y=f(x),x=a,x=b y=f(x),x=a,x=b x x x轴所围成的曲边梯形的面积的负值
  • ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx存在,若在 [ a , b ] [a,b] [a,b] f ( x ) f(x) f(x)的值有正有负,则 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx的值等于 x x x轴上方的面积减去 x x x轴下方的面积之差

三、定积分的定义求极限

如果积分 ∫ a b f ( x ) d x \int^b_af(x)dx abf(x)dx存在,则 ∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int^b_af(x)dx=\lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i)\Delta x_i abf(x)dx=limλ0i=1nf(ξi)Δxi,且极限 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i)\Delta x_i limλ0i=1nf(ξi)Δxi ξ i \xi_i ξi的取法和区间 [ a , b ] [a,b] [a,b]分法无关,因为如果积分 ∫ 0 1 f ( x ) d x \int^1_0f(x)dx 01f(x)dx存在,就可以将其在 [ 0 , 1 ] [0,1] [0,1] n n n等分,此时 Δ x i = 1 n \Delta x_i=\frac1n Δxi=n1,取 ξ i = i n \xi_i=\frac in ξi=ni,有定积分的定义得 ∫ 0 1 f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = lim ⁡ λ → 0 1 n ∑ i = 1 n f ( i n ) \int^1_0f(x)dx=\lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i)\Delta x_i=\lim_{\lambda\to0}\frac1n\sum^n_{i=1}f(\frac in) 01f(x)dx=λ0limi=1nf(ξi)Δxi=λ0limn1i=1nf(ni)

一些个人理解
lim ⁡ λ → 0 1 n ∑ i = 1 n f ( i n ) \lim_{\lambda\to0}\frac1n\sum^n_{i=1}f(\frac in) limλ0n1i=1nf(ni) 1 n \frac 1n n1即对应 ∫ 0 1 f ( x ) d x \int^1_0f(x)dx 01f(x)dx中的 d x dx dx,同时将 1 1 1整除 n n n意味着将 1 1 1分成 n n n份,即积分区间为 [ 0 , 1 ] [0,1] [0,1] ∑ i = 1 n f ( i n ) \sum^n_{i=1}f(\frac in) i=1nf(ni)对应 f ( x ) f(x) f(x)

例1:求 lim ⁡ n → ∞ ( 1 n 2 + 2 n 2 + ⋯ + n n 2 ) \lim_{n\to\infty}(\frac1{n^2}+\frac2{n^2}+\cdots+\frac n{n^2}) limn(n21+n22++n2n)
lim ⁡ n → ∞ ( 1 n 2 + 2 n 2 + ⋯ + n n 2 ) = lim ⁡ n → ∞ 1 n ( 1 n + 2 n + ⋯ + n n ) = lim ⁡ n → ∞ 1 n ∑ i = 1 n i n = ∫ 0 1 x d x = 1 2 x 2 ∣ 0 1 = 1 2 \begin{aligned}\lim_{n\to\infty}(\frac1{n^2}+\frac2{n^2}+\cdots+\frac n{n^2})&=\lim_{n\to\infty}\frac1n(\frac1n+\frac2n+\cdots+\frac nn)\\&=\lim_{n\to\infty}\frac1n\sum^n_{i=1}\frac in\\&=\int^1_0xdx=\frac12x^2\Big|^1_0\\&=\frac12\end{aligned} nlim(n21+n22++n2n)=nlimn1(n1+n2++nn)=nlimn1i=1nni=01xdx=21x2 01=21
见到可能使用定积分的定义求极限的,先提一个 1 n \frac1n n1出来,后面留的只能有常数项以及 i n \frac in ni(由于 i n \frac in ni等价于自变量 x x x,因此可以有系数、指数,可以在三角函数内等)

四、可积的充分条件

  • 设函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积
  • 设函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上有界,且只有有限个间断点,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积(存在有界震荡间断点的函数可积)

五、定积分的性质

定理1:设 α \alpha α β \beta β均为常数,则 ∫ a b [ α f ( x ) + β g ( x ) ] d x = α ∫ a b f ( x ) d x + β ∫ a b g ( x ) d x \int^b_a[\alpha f(x)+\beta g(x)]dx=\alpha\int^b_af(x)dx+\beta\int^b_ag(x)dx ab[αf(x)+βg(x)]dx=αabf(x)dx+βabg(x)dx
定理2:设 a < c < b a<c<b a<c<b,则 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int^b_af(x)dx=\int^c_af(x)dx+\int^b_cf(x)dx abf(x)dx=acf(x)dx+cbf(x)dx
定理3:如果在区间 [ a , b ] [a,b] [a,b] f ( x ) ≡ 1 f(x)\equiv1 f(x)1,那么 ∫ a b 1 d x = ∫ a b d x = b − a \int^b_a1dx=\int^b_adx=b-a ab1dx=abdx=ba
定理4:如果在区间 [ a , b ] [a,b] [a,b] f ( x ) ≥ 0 f(x)\geq0 f(x)0,那么 ∫ a b f ( x ) d x ≥ 0 ( a < b ) \int^b_af(x)dx\geq0\quad(a<b) abf(x)dx0(a<b)
推论1:如果在区间 [ a , b ] [a,b] [a,b] f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),那么 ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x ( a < b ) \int^b_af(x)dx\leq\int^b_ag(x)dx\quad(a<b) abf(x)dxabg(x)dx(a<b)
即证 ∫ a b g ( x ) d x − ∫ a b f ( x ) d x ≥ 0 \int^b_ag(x)dx-\int^b_af(x)dx\geq0 abg(x)dxabf(x)dx0
由性质1得
∫ a b g ( x ) d x − ∫ a b f ( x ) d x = ∫ a b [ g ( x ) − f ( x ) ] d x \int^b_ag(x)dx-\int^b_af(x)dx=\int^b_a[g(x)-f(x)]dx abg(x)dxabf(x)dx=ab[g(x)f(x)]dx
∵ \because 在区间 [ a , b ] [a,b] [a,b]上, g ( x ) − f ( x ) ≥ 0 g(x)-f(x)\geq0 g(x)f(x)0
由性质4得
∫ a b [ g ( x ) − f ( x ) ] d x ≥ 0 \int^b_a[g(x)-f(x)]dx\geq0 ab[g(x)f(x)]dx0
∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x ( a < b ) \int^b_af(x)dx\leq\int^b_ag(x)dx\quad(a<b) abf(x)dxabg(x)dx(a<b)
推论2 ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x ( a < b ) |\int^b_af(x)dx|\leq\int^b_a|f(x)|dx\quad(a<b) abf(x)dxabf(x)dx(a<b)
∵ − ∣ f ( x ) ∣ ≤ ∣ f ( x ) ≤ ∣ f ( x ) ∣ \because-|f(x)|\leq|f(x)\leq|f(x)| f(x)f(x)f(x)
由推论1知
− ∫ a b ∣ f ( x ) ∣ d x ≤ ∫ a b f ( x ) d x ≤ ∫ a b ∣ f ( x ) ∣ d x ∣ ∫ a b f ( x ) d x ∣ ≤ ∣ ∫ a b ∣ f ( x ) ∣ d x ∣ (两头的式子加绝对值后相等构成该不等式后项) ∫ a b f ( x ) d x ≤ ∫ a b ∣ f ( x ) ∣ d x \begin{aligned}-&\int^b_a|f(x)|dx\leq\int^b_af(x)dx\leq\int^b_a|f(x)|dx\\&\Big|\int^b_af(x)dx\Big|\leq\Big|\int^b_a|f(x)|dx\Big|\text{(两头的式子加绝对值后相等构成该不等式后项)}\\&\int^b_af(x)dx\leq\int^b_a|f(x)|dx\end{aligned} abf(x)dxabf(x)dxabf(x)dx abf(x)dx abf(x)dx (两头的式子加绝对值后相等构成该不等式后项)abf(x)dxabf(x)dx
估值定理:设 M M M m m m分别是函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上的最大值及最小值,则 m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) ( a < b ) m(b-a)\leq\int^b_af(x)dx\leq M(b-a)\quad(a<b) m(ba)abf(x)dxM(ba)(a<b)
∵ f ( x ) \because f(x) f(x) [ a , b ] [a,b] [a,b]上,有最大值 M M M,最小值 m m m
故, m ≤ f ( x ) ≤ M m\leq f(x)\leq M mf(x)M
由推论1知, ∫ a b m d x ≤ ∫ a b f ( x ) d x ≤ a b M d x \int^b_amdx\leq\int^b_af(x)dx\leq^b_aMdx abmdxabf(x)dxabMdx
由性质1和3得, m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq\int^b_af(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)
定积分中值定理:如果函数 f ( x ) f(x) f(x)在积分区间 [ a , b ] [a,b] [a,b]上连续,那么在 [ a , b ] [a,b] [a,b]上至少存在一个点 ξ \xi ξ,使下式成立: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) ( a ≤ ξ ≤ b ) \int^b_af(x)dx=f(\xi)(b-a)\quad(a\leq\xi\leq b) abf(x)dx=f(ξ)(ba)(aξb)
由估值定理得
m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m ≤ ∫ a b f ( x ) d x b − a ≤ M \begin{gathered}m(b-a)\leq\int^b_af(x)dx\leq M(b-a)\\m\leq\frac{\int^b_af(x)dx}{b-a}\leq M\end{gathered} m(ba)abf(x)dxM(ba)mbaabf(x)dxM
由介值定理得,存在一点 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b],使得 f ( ξ ) = ∫ a b f ( x ) d x b − a f(\xi)=\frac{\int^b_af(x)dx}{b-a} f(ξ)=baabf(x)dx
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) ( a ≤ ξ ≤ b ) \int^b_af(x)dx=f(\xi)(b-a)\quad(a\leq\xi\leq b) abf(x)dx=f(ξ)(ba)(aξb)

微积分的基本公式

一、积分上限函数及其导数

1. 定义

设函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续,且 x x x [ a , b ] [a,b] [a,b]上可以任意移动的一点,我们称 Φ ( x ) = ∫ a x f ( t ) d t \Phi(x)=\int^x_af(t)dt Φ(x)=axf(t)dt为变上限积分

2. 性质

  • 如果函数f(x)在区间 [ a , b ] [a,b] [a,b]上连续,那么积分上限的函数 Φ ( x ) = ∫ a x f ( t ) d t \Phi(x)=\int^x_af(t)dt Φ(x)=axf(t)dt [ a , b ] [a,b] [a,b]上可导,并且它的导数 Φ ′ ( x ) = d d x ∫ a x f ( t ) d t = f ( x ) ( a ≤ x ≤ b ) \Phi'(x)=\frac d{dx}\int^x_af(t)dt=f(x)\quad(a\leq x\leq b) Φ(x)=dxdaxf(t)dt=f(x)(axb)
  • 如果函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续,那么函数 Φ ( x ) = ∫ a x f ( t ) d t \Phi(x)=\int^x_af(t)dt Φ(x)=axf(t)dt就是 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上的一个原函数

二、牛顿-莱布尼茨公式

微积分基本定理:如果函数 F ( x ) F(x) F(x)是连续函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上的一个原函数,那么 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int^b_af(x)dx=F(b)-F(a) abf(x)dx=F(b)F(a),该公式叫做牛顿-莱布尼茨公式,也叫作微积分基本公式
例1:设 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)内连续且 f ( x ) > 0 f(x)>0 f(x)>0,证明函数 F ( x ) = ∫ a x t f ( t ) d t ∫ a b f ( t ) d t F(x)=\frac{\int^x_atf(t)dt}{\int^b_af(t)dt} F(x)=abf(t)dtaxtf(t)dt ( 0 , + ∞ ) (0,+\infty) (0,+)内为单调增加函数
d ∫ 0 x t f ( t ) d t d x = x f ( x ) \frac{d\int^x_0tf(t)dt}{dx}=xf(x) dxd0xtf(t)dt=xf(x)
d ∫ 0 x f ( t ) d t d x = f ( x ) \frac{d\int^x_0f(t)dt}{dx}=f(x) dxd0xf(t)dt=f(x)
F ′ ( x ) = x f ( x ) ∫ 0 x f ( t ) d t − f ( x ) ∫ 0 x t f ( t ) d t [ ∫ 0 x f ( t ) d t ] 2 = f ( x ) ∫ 0 x x f ( t ) d t − f ( x ) ∫ 0 x t f ( t ) d t [ ∫ 0 x f ( t ) d t ] 2 (对于 ∫ 0 x f ( t ) d t 是对 t 积分, x 是常数,可以直接移到里面 ∫ 0 x x f ( t ) d t ) = f ( x ) [ ∫ 0 x ( x − t ) f ( t ) d t ] [ ∫ 0 x f ( t ) d t ] 2 \begin{aligned}F'(x)&=\frac{xf(x)\int^x_0f(t)dt-f(x)\int^x_0tf(t)dt}{[\int^x_0f(t)dt]^2}\\&=\frac{f(x)\int^x_0xf(t)dt-f(x)\int^x_0tf(t)dt}{[\int^x_0f(t)dt]^2}\\&\text{(对于}\int^x_0f(t)dt\text{是对}t\text{积分,}x\text{是常数,可以直接移到里面}\int^x_0xf(t)dt\text{)}\\&=\frac{f(x)[\int^x_0(x-t)f(t)dt]}{[\int^x_0f(t)dt]^2}\end{aligned} F(x)=[0xf(t)dt]2xf(x)0xf(t)dtf(x)0xtf(t)dt=[0xf(t)dt]2f(x)0xxf(t)dtf(x)0xtf(t)dt(对于0xf(t)dt是对t积分,x是常数,可以直接移到里面0xxf(t)dt=[0xf(t)dt]2f(x)[0x(xt)f(t)dt]
其中
[ ∫ 0 x f ( t ) d t ] 2 > 0 [\int^x_0f(t)dt]^2>0 [0xf(t)dt]2>0
f ( x ) > 0 f(x)>0 f(x)>0
∫ 0 x ( x − t ) f ( t ) d t \int^x_0(x-t)f(t)dt 0x(xt)f(t)dt的积分区间 ∫ 0 x \int^x_0 0x上限大于下限,因此 > 0 >0 >0;被积函数 ( x − t ) f ( t ) > 0 ( 0 ≤ t ≤ x ) (x-t)f(t)>0\quad(0\leq t\leq x) (xt)f(t)>0(0tx)。因此 ∫ 0 x ( x − t ) f ( t ) d t > 0 \int^x_0(x-t)f(t)dt>0 0x(xt)f(t)dt>0
f ( x ) [ ∫ 0 x ( x − t ) f ( t ) d t ] [ ∫ 0 x f ( t ) d t ] 2 > 0 \frac{f(x)[\int^x_0(x-t)f(t)dt]}{[\int^x_0f(t)dt]^2}>0 [0xf(t)dt]2f(x)[0x(xt)f(t)dt]>0,即 F ′ ( x ) > 0 F'(x)>0 F(x)>0
证毕

上下限含有关于x的函数的积分的导数

[ ∫ a f ( x ) F ( t ) d t ] ′ = F ( f ( x ) ) ⋅ f ′ ( x ) [ ∫ g ( x ) b F ( t ) d t ] ′ = [ − ∫ b g ( x ) F ( t ) d t ] ′ = − F ( g ( x ) ) ⋅ g ′ ( x ) [ ∫ g ( x ) f ( x ) F ( t ) d t ] ′ = [ ∫ g ( x ) a F ( t ) d t + ∫ a f ( x ) F ( t ) d t ] ′ = F ( f ( x ) ) ⋅ f ′ ( x ) − F ( g ( x ) ) ⋅ g ′ ( x ) \begin{aligned}&[\int^{f(x)}_aF(t)dt]'=F(f(x))\cdot f'(x)\\&[\int_{g(x)}^bF(t)dt]'=[-\int^{g(x)}_bF(t)dt]'=-F(g(x))\cdot g'(x)\\&[\int^{f(x)}_{g(x)}F(t)dt]'=[\int^a_{g(x)}F(t)dt+\int^{f(x)}_aF(t)dt]'=F(f(x))\cdot f'(x)-F(g(x))\cdot g'(x)\end{aligned} [af(x)F(t)dt]=F(f(x))f(x)[g(x)bF(t)dt]=[bg(x)F(t)dt]=F(g(x))g(x)[g(x)f(x)F(t)dt]=[g(x)aF(t)dt+af(x)F(t)dt]=F(f(x))f(x)F(g(x))g(x)
例2:计算 lim ⁡ x → 0 ∫ cos ⁡ x 1 e − t 2 d t x 2 \lim_{x\to0}\frac{\int^1_{\cos x}e^{-t^2}dt}{x^2} limx0x2cosx1et2dt
lim ⁡ x → 0 ∫ cos ⁡ x 1 e − t 2 d t x 2 = lim ⁡ x → 0 − e − cos ⁡ 2 x ⋅ ( cos ⁡ x ) ′ 2 x = lim ⁡ x → 0 sin ⁡ x ⋅ e − cos ⁡ 2 x 2 x = 1 2 lim ⁡ x → 0 e − cos ⁡ 2 x = 1 2 e − 1 \begin{aligned}\lim_{x\to0}\frac{\int^1_{\cos x}e^{-t^2}dt}{x^2}&=\lim_{x\to0}\frac{-e^{-\cos^2x}\cdot(\cos x)'}{2x}\\&=\lim_{x\to0}\frac{\sin x\cdot e^{-\cos^2x}}{2x}\\&=\frac12\lim_{x\to0}e^{-\cos^2x}\\&=\frac12e^{-1}\end{aligned} x0limx2cosx1et2dt=x0lim2xecos2x(cosx)=x0lim2xsinxecos2x=21x0limecos2x=21e1

定积分的换元法和分部积分法

一、定积分的换元法

假设函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续,函数 x = ϕ ( t ) x=\phi(t) x=ϕ(t)满足条件

  • ϕ ( α ) = a , ϕ ( β ) = b \phi(\alpha)=a,\phi(\beta)=b ϕ(α)=a,ϕ(β)=b
  • ϕ ( t ) \phi(t) ϕ(t) [ α , β ] [\alpha,\beta] [α,β],且其值域 R ϕ = [ a , b ] R_{\phi}=[a,b] Rϕ=[a,b]
    则有 ∫ a b f ( x ) d x = ∫ α β f [ ϕ ( t ) ] ϕ ′ ( t ) d t \int^b_af(x)dx=\int^{\beta}_{\alpha}f[\phi(t)]\phi'(t)dt abf(x)dx=αβf[ϕ(t)]ϕ(t)dt,即为定积分的换元公式

例1:计算 ∫ 0 a a 2 − x 2 d x ( a > 0 ) \int^a_0\sqrt{a^2-x^2}dx\quad(a>0) 0aa2x2 dx(a>0)
x = a sin ⁡ t , d x = a cos ⁡ t d t x=a\sin t,dx=a\cos tdt x=asint,dx=acostdt(注意 d x dx dx也要换成 d t dt dt
x = 0 x=0 x=0时, t = 0 t=0 t=0,当 x = a x=a x=a时, t = π 2 t=\frac\pi2 t=2π
∫ 0 a a 2 − x 2 d x = ∫ 0 π 2 a 2 cos ⁡ 2 t d t = a 2 ∫ 0 π 2 1 + cos ⁡ 2 t 2 d t = a 2 2 ( t + 1 2 sin ⁡ 2 t ) ∣ 0 π 2 = π 4 a 2 \begin{aligned}\int^a_0\sqrt{a^2-x^2}dx&=\int^{\frac\pi2}_0a^2\cos^2tdt\\&=a^2\int^{\frac\pi2}_0\frac{1+\cos 2t}{2}dt\\&=\frac {a^2}2(t+\frac12\sin 2t)\Big|^{\frac\pi2}_0\\&=\frac\pi4a^2\end{aligned} 0aa2x2 dx=02πa2cos2tdt=a202π21+cos2tdt=2a2(t+21sin2t) 02π=4πa2
例2:计算 ∫ 0 π sin ⁡ 3 x − sin ⁡ 5 x d x \int^\pi_0\sqrt{\sin^3x-\sin^5x}dx 0πsin3xsin5x dx
∫ 0 π sin ⁡ 3 x − sin ⁡ 5 x d x = ∫ 0 π sin ⁡ 3 x cos ⁡ 2 x d x = ∫ 0 π sin ⁡ 3 2 x ⋅ ∣ cos ⁡ x ∣ d x (由于积分区间在 0 到 π ,对于 ∣ cos ⁡ x ∣ 函数不同,因此要拆成两个区间,要求每个区间内 ∣ cos ⁡ x ∣ 对应函数相同) = ∫ 0 π 2 sin ⁡ 3 2 x cos ⁡ x d x + ∫ π 2 π sin ⁡ 3 2 x ( − cos ⁡ x ) d x = 2 5 sin ⁡ 5 2 x ∣ 0 π 2 − 2 5 sin ⁡ 5 2 x ∣ π 2 π = 4 5 \begin{aligned}\int^\pi_0\sqrt{\sin^3x-\sin^5x}dx&=\int^\pi_0\sqrt{\sin^3x\cos^2x}dx\\&=\int^\pi_0\sin^{\frac32}x\cdot|\cos x|dx\\&\text{(由于积分区间在}0\text{到}\pi\text{,对于}|\cos x|\text{函数不同,因此要拆成两个区间,要求每个区间内}|\cos x|\text{对应函数相同)}\\&=\int^{\frac\pi2}_0\sin^{\frac32}x\cos xdx+\int^\pi_{\frac\pi2}\sin^{\frac32}x(-\cos x)dx\\&=\frac25\sin^{\frac52}x\Big|^{\frac\pi2}_0-\frac25\sin^{\frac52}x\Big|^\pi_{\frac\pi2}\\&=\frac45\end{aligned} 0πsin3xsin5x dx=0πsin3xcos2x dx=0πsin23xcosxdx(由于积分区间在0π,对于cosx函数不同,因此要拆成两个区间,要求每个区间内cosx对应函数相同)=02πsin23xcosxdx+2ππsin23x(cosx)dx=52sin25x 02π52sin25x 2ππ=54

1. 奇偶函数对称区间的定积分结论

  • f ( x ) f(x) f(x) [ − a , a ] [-a,a] [a,a]上连续且为偶函数,则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int^a_{-a}f(x)dx=2\int^a_0f(x)dx aaf(x)dx=20af(x)dx
  • f ( x ) f(x) f(x) [ − a , a ] [-a,a] [a,a]上连续且为奇函数,则 ∫ − a a f ( x ) d x = 0 \int^a_{-a}f(x)dx=0 aaf(x)dx=0

偶函数的证明:
∫ − a a f ( x ) d x = ∫ − a 0 f ( x ) d x + ∫ 0 a f ( x ) d x \begin{aligned}\int^a_{-a}f(x)dx=\int^0_{-a}f(x)dx+\int^a_0f(x)dx\end{aligned} aaf(x)dx=a0f(x)dx+0af(x)dx
其中
∫ − a 0 f ( x ) d x = d x = − d t t = − x ∫ a 0 f ( − t ) d ( − t ) = ∫ 0 a f ( t ) d t = x = t ∫ 0 a f ( x ) d x \begin{aligned}\int^0_{-a}f(x)dx\overset{t=-x}{\underset{dx=-dt}{=}}&\int^0_af(-t)d(-t)=\int^a_0f(t)dt\overset{x=t}{=}\int^a_0f(x)dx\end{aligned} a0f(x)dxdx=dt=t=xa0f(t)d(t)=0af(t)dt=x=t0af(x)dx
因此 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \begin{aligned}\int^a_{-a}f(x)dx=2\int^a_0f(x)dx\end{aligned} aaf(x)dx=20af(x)dx
证毕
奇函数的证明:
∫ − a a f ( x ) d x = ∫ − a 0 f ( x ) d x + ∫ 0 a f ( x ) d x \begin{aligned}\int^a_{-a}f(x)dx=\int^0_{-a}f(x)dx+\int^a_0f(x)dx\end{aligned} aaf(x)dx=a0f(x)dx+0af(x)dx
其中
∫ − a 0 f ( x ) d x = d x = − d t t = − x ∫ a 0 f ( − t ) d ( − t ) = − ∫ 0 a f ( t ) d t = x = t − ∫ 0 a f ( x ) d x \begin{aligned}\int^0_{-a}f(x)dx\overset{t=-x}{\underset{dx=-dt}{=}}&\int^0_af(-t)d(-t)=-\int^a_0f(t)dt\overset{x=t}{=}-\int^a_0f(x)dx\end{aligned} a0f(x)dxdx=dt=t=xa0f(t)d(t)=0af(t)dt=x=t0af(x)dx
因此 ∫ − a a f ( x ) d x = 0 \begin{aligned}\int^a_{-a}f(x)dx=0\end{aligned} aaf(x)dx=0
证毕

2. 三角函数的定积分结论

f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续

  • ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x \int^{\frac\pi2}_0f(\sin x)dx=\int^{\frac\pi2}_0f(\cos x)dx 02πf(sinx)dx=02πf(cosx)dx
  • ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int^\pi_0xf(\sin x)dx=\frac\pi2\int^\pi_0f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx
    一般只用于只有 sin ⁡ \sin sin cos ⁡ \cos cos的函数中
区间再现公式

即当令 t = t= t=积分上限 + + +积分下限 − - 对谁的微分,换元后的积分区间与原积分区间相同
∫ a b f ( x ) d x = d x = − d t 令 t = a + b − x ∫ b a f ( a + b − t ) ( − d t ) = ∫ a b f ( a + b − t ) d t = t = x ∫ a b f ( a + b − x ) d t \begin{aligned}\int^b_af(x)dx\overset{\text{令}t=a+b-x}{\underset{dx=-dt}{=}}&\int^a_bf(a+b-t)(-dt)\\=&\int^b_af(a+b-t)dt\\\overset{t=x}{=}&\int^b_af(a+b-x)dt\end{aligned} abf(x)dxdx=dt=t=a+bx==t=xbaf(a+bt)(dt)abf(a+bt)dtabf(a+bx)dt
证明1:
x = π 2 − t , d x = − d t x=\frac\pi2-t,dx=-dt x=2πt,dx=dt
∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ π 2 0 f [ sin ⁡ ( π 2 − t ) ] ( − d t ) = ∫ 0 π 2 f ( cos ⁡ t ) d t = t = x ∫ 0 π 2 f ( cos ⁡ x ) d x \begin{aligned}\int^\frac\pi2_0f(\sin x)dx=\int^0_\frac\pi2f[\sin(\frac\pi2-t)](-dt)=\int^\frac\pi2_0f(\cos t)dt\overset{t=x}{=}\int^\frac\pi2_0f(\cos x)dx\end{aligned} 02πf(sinx)dx=2π0f[sin(2πt)](dt)=02πf(cost)dt=t=x02πf(cosx)dx
证毕
证明2:
∫ 0 π x f ( sin ⁡ x ) d x = d t = − d x 令 t = π − x − ∫ π 0 ( π − t ) f ( sin ⁡ ( π − t ) ) d t = ∫ 0 π ( π − t ) f ( sin ⁡ t ) d t = π ∫ 0 π f ( sin ⁡ t ) d t − ∫ 0 π t f ( sin ⁡ t ) d t = t = x π ∫ 0 π f ( sin ⁡ x ) d x − ∫ 0 π x f ( sin ⁡ x ) d x \begin{aligned}\int^\pi_0xf(\sin x)dx\overset{\text{令}t=\pi-x}{\underset{dt=-dx}{=}}&-\int^0_\pi(\pi-t)f(\sin(\pi-t))dt\\=&\int^\pi_0(\pi-t)f(\sin t)dt\\=&\pi\int^\pi_0f(\sin t)dt-\int^\pi_0tf(\sin t)dt\\\overset{t=x}{=}&\pi\int^\pi_0f(\sin x)dx-\int^\pi_0xf(\sin x)dx\end{aligned} 0πxf(sinx)dxdt=dx=t=πx===t=xπ0(πt)f(sin(πt))dt0π(πt)f(sint)dtπ0πf(sint)dt0πtf(sint)dtπ0πf(sinx)dx0πxf(sinx)dx
∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int^\pi_0xf(\sin x)dx=\frac\pi2\int^\pi_0f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx
证毕
例3:求 ∫ 0 π x sin ⁡ x 1 + cos ⁡ 2 x d x \int^\pi_0\frac{x\sin x}{1+\cos^2x}dx 0π1+cos2xxsinxdx
∫ 0 π x sin ⁡ x 1 + cos ⁡ 2 x d x = π 2 ∫ 0 π sin ⁡ x 1 + cos ⁡ 2 x d x = − π 2 ∫ 0 π d ( cos ⁡ x ) 1 + cos ⁡ 2 x = − π 2 arctan ⁡ ( cos ⁡ x ) ∣ 0 π = π 2 4 \begin{aligned}\int^\pi_0\frac{x\sin x}{1+\cos^2x}dx&=\frac\pi2\int^\pi_0\frac{\sin x}{1+\cos^2x}dx\\&=-\frac\pi2\int^\pi_0\frac{d(\cos x)}{1+\cos^2x}\\&=-\frac\pi2\arctan(\cos x)\Big|^\pi_0\\&=\frac{\pi^2}4\end{aligned} 0π1+cos2xxsinxdx=2π0π1+cos2xsinxdx=2π0π1+cos2xd(cosx)=2πarctan(cosx) 0π=4π2

3. 周期函数的定积分结论

f ( x ) f(x) f(x)为连续的周期函数,周期为 T T T

  • ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int^{a+T}_af(x)dx=\int^T_0f(x)dx aa+Tf(x)dx=0Tf(x)dx
  • ∫ a a + n T f ( x ) d x = n ∫ 0 T f ( x ) d x ( n ∈ N ) \int^{a+nT}_af(x)dx=n\int^T_0f(x)dx\quad(n\in N) aa+nTf(x)dx=n0Tf(x)dx(nN)

证明1:
法1
∫ a a + T f ( x ) d x , ∫ 0 T f ( x ) d x \int^{a+T}_af(x)dx,\int^T_0f(x)dx aa+Tf(x)dx,0Tf(x)dx看做是关于 a a a的函数,二者相等,即函数为常数,导数为 0 0 0
F ( a ) = ∫ a a + T f ( x ) d x = ∫ a 0 f ( x ) d x + ∫ 0 a + T f ( x ) d x F(a)=\int^{a+T}_af(x)dx=\int^0_af(x)dx+\int^{a+T}_0f(x)dx F(a)=aa+Tf(x)dx=a0f(x)dx+0a+Tf(x)dx
F ′ ( a ) = − f ( a ) + f ( a + T ) = 0 F'(a)=-f(a)+f(a+T)=0 F(a)=f(a)+f(a+T)=0
F ( a ) ≡ C F(a)\equiv C F(a)C
F ( a ) = F ( 0 ) F(a)=F(0) F(a)=F(0)
∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int^{a+T}_af(x)dx=\int^T_0f(x)dx aa+Tf(x)dx=0Tf(x)dx
证毕
法2
从原积分区间拆出结果的积分区间,剩余部分和为 0 0 0
∫ a a + T f ( x ) d x = ∫ a 0 f ( x ) d x + ∫ 0 T f ( x ) d x + ∫ T a + T f ( x ) d x \int^{a+T}_af(x)dx=\int^0_af(x)dx+\int^T_0f(x)dx+\int^{a+T}_Tf(x)dx aa+Tf(x)dx=a0f(x)dx+0Tf(x)dx+Ta+Tf(x)dx
∫ T a + T f ( x ) d x = d x = d t 令 x − T = t ∫ 0 a f ( t + T ) d t = ∫ a a f ( t ) d t = t = x ∫ 0 a f ( x ) d x \int_T^{a+T}f(x)dx\overset{\text{令}x-T=t}{\underset{dx=dt}{=}}\int_0^af(t+T)dt=\int_a^af(t)dt\overset{t=x}{=}\int_0^af(x)dx Ta+Tf(x)dxdx=dt=xT=t0af(t+T)dt=aaf(t)dt=t=x0af(x)dx
∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int^{a+T}_af(x)dx=\int^T_0f(x)dx aa+Tf(x)dx=0Tf(x)dx
证毕
证明2:
∫ a a + n T f ( x ) d x = ∫ a a + T f ( x ) d x + ∫ a + T a + 2 T f ( x ) d x + ⋯ + ∫ a + ( n − 1 ) T a + n T f ( x ) d x = ∑ i = 0 n − 1 ∫ a + k T a + ( k + 1 ) T f ( x ) d x \begin{aligned}\int^{a+nT}_af(x)dx=\int_a^{a+T}f(x)dx+\int_{a+T}^{a+2T}f(x)dx+\cdots+\int_{a+(n-1)T}^{a+nT}f(x)dx=\sum_{i=0}^{n-1}\int_{a+kT}^{a+(k+1)T}f(x)dx\end{aligned} aa+nTf(x)dx=aa+Tf(x)dx+a+Ta+2Tf(x)dx++a+(n1)Ta+nTf(x)dx=i=0n1a+kTa+(k+1)Tf(x)dx
故由 ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \begin{aligned}\int^{a+T}_af(x)dx=\int^T_0f(x)dx\end{aligned} aa+Tf(x)dx=0Tf(x)dx可知, ∫ a + k T a + ( k + 1 ) T f ( x ) d x = ∫ 0 T f ( x ) d x \begin{aligned}\int^{a+(k+1)T}_{a+kT}f(x)dx=\int^T_0f(x)dx\end{aligned} a+kTa+(k+1)Tf(x)dx=0Tf(x)dx
∫ a a + n T f ( x ) d x = n ∫ 0 T f ( x ) d x \int^{a+nT}_af(x)dx=n\int^T_0f(x)dx aa+nTf(x)dx=n0Tf(x)dx
证毕
例4:求 ∫ 0 n π 1 + 2 sin ⁡ 2 x d x \int_0^{n\pi}\sqrt{1+2\sin2x}dx 01+2sin2x dx
∫ 0 n π 1 + 2 sin ⁡ 2 x d x = n ∫ 0 π 1 + sin ⁡ 2 x d x = n ∫ 0 π ( sin ⁡ x + cos ⁡ x ) 2 d x = 2 n ∫ 0 π [ sin ⁡ ( x + π 4 ) ] 2 d x = 2 n ∫ 0 π ∣ sin ⁡ ( x + π 4 ) 2 ∣ d x = x + π 4 = t 2 n ∫ π 4 5 4 π ∣ sin ⁡ t ∣ d t = 2 n ∫ 0 π sin ⁡ x d x = 2 2 n \begin{aligned}\int_0^{n\pi}\sqrt{1+2\sin2x}dx&=n\int_0^\pi\sqrt{1+\sin2x}dx\\&=n\int_0^\pi\sqrt{(\sin x+\cos x)^2}dx\\&=\sqrt{2}n\int_0^\pi\sqrt{[\sin(x+\frac\pi4)]^2}dx\\&=\sqrt{2}n\int_0^\pi|\sin(x+\frac\pi4)^2|dx\\&\overset{x+\frac\pi4=t}{=}\sqrt2n\int_{\frac\pi4}^{\frac54\pi}|\sin t|dt\\&=\sqrt2n\int^\pi_0\sin xdx\\&=2\sqrt2n\end{aligned} 01+2sin2x dx=n0π1+sin2x dx=n0π(sinx+cosx)2 dx=2 n0π[sin(x+4π)]2 dx=2 n0πsin(x+4π)2dx=x+4π=t2 n4π45πsintdt=2 n0πsinxdx=22 n
例5:求 ∫ 0 3 x 2 ( x 2 − 3 x + 3 ) 2 d x \int_0^3\frac{x^2}{(x^2-3x+3)^2}dx 03(x23x+3)2x2dx
一般见到分式,分子或分母都有未知数,且至少其中一个有 ( a x + b ) c ( c 为正整数或 1 2 ) (ax+b)^c\quad(c\text{为正整数或}\frac12) (ax+b)c(c为正整数或21)一般需要三角换元;对于根式还可能整体换元
∫ 0 3 x 2 ( x 2 − 3 x + 3 ) 2 d x = ∫ 0 3 x 2 [ ( x − 3 2 ) 2 + ( 3 2 ) 2 ] 2 d x 令 x − 3 2 = 3 2 tan ⁡ u , d x = 3 2 sec ⁡ 2 u d u = ∫ − π 3 π 3 ( 3 2 + 3 2 tan ⁡ u ) 2 [ ( 3 4 ) 2 sec ⁡ 2 u ] 2 3 2 sec ⁡ 2 u d u = 8 9 3 ∫ − π 3 π 3 ( 3 4 tan ⁡ 2 u cos ⁡ 2 u ⏟ 偶函数 + 3 2 tan ⁡ u cos ⁡ 2 u ⏟ 奇函数 + 9 4 cos ⁡ 2 u ⏟ 偶函数 ) d u = 4 3 3 ∫ 0 π 3 ( sin ⁡ 2 u + 3 cos ⁡ 2 u ) d u = 4 3 3 ∫ 0 π 3 ( 2 + cos ⁡ 2 u ) d u = 4 3 3 ( 2 u + 1 2 sin ⁡ 2 u ) ∣ 0 π 3 = 8 π 3 3 + 1 \begin{aligned}\int_0^3\frac{x^2}{(x^2-3x+3)^2}dx&=\int_0^3\frac{x^2}{[(x-\frac32)^2+(\frac{\sqrt3}2)^2]^2}dx\\&\text{令}x-\frac32=\frac{\sqrt3}2\tan u,dx=\frac{\sqrt3}2\sec^2udu\\&=\int^{\frac\pi3}_{-\frac\pi3}\frac{(\frac32+\frac{\sqrt3}2\tan u)^2}{[(\frac34)^2\sec^2u]^2}\frac{\sqrt3}2\sec^2udu\\&=\frac89\sqrt3\int^{\frac\pi3}_{-\frac\pi3}(\underbrace{\frac34\tan^2u\cos^2u}_\text{偶函数}+\underbrace{\frac{\sqrt3}2\tan u\cos^2u}_\text{奇函数}+\underbrace{\frac94\cos^2u}_\text{偶函数})du\\&=\frac43\sqrt3\int^{\frac\pi3}_0(\sin^2u+3\cos^2u)du\\&=\frac43\sqrt3\int^{\frac\pi3}_0(2+\cos2u)du\\&=\frac43\sqrt3(2u+\frac12\sin2u)\Big|^{\frac\pi3}_0\\&=\frac{8\pi}{3\sqrt3}+1\end{aligned} 03(x23x+3)2x2dx=03[(x23)2+(23 )2]2x2dxx23=23 tanu,dx=23 sec2udu=3π3π[(43)2sec2u]2(23+23 tanu)223 sec2udu=983 3π3π(偶函数 43tan2ucos2u+奇函数 23 tanucos2u+偶函数 49cos2u)du=343 03π(sin2u+3cos2u)du=343 03π(2+cos2u)du=343 (2u+21sin2u) 03π=33 8π+1

二、定积分的分部积分法

依据不定积分的分部积分法,可得 ∫ a b u ( x ) v ′ ( x ) d x = [ u ( x ) v ( x ) ] a b − ∫ a b v ( x ) u ′ ( x ) d x \int^b_au(x)v'(x)dx=[u(x)v(x)]^b_a-\int^b_av(x)u'(x)dx abu(x)v(x)dx=[u(x)v(x)]ababv(x)u(x)dx简记作 ∫ a b u v ′ d x = [ u v ] a b − ∫ a b v u ′ d x 或 ∫ a b u d v = [ u v ] a b − ∫ a b v d u \int^b_auv'dx=[uv]^b_a-\int^b_avu'dx或\int^b_audv=[uv]^b_a-\int^b_avdu abuvdx=[uv]ababvudxabudv=[uv]ababvdu

华里式公式(点火公式)

I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋯ 3 4 ⋅ 1 2 ⋅ π 2 , n 为偶数 n − 1 n ⋅ n − 3 n − 2 ⋯ 4 5 ⋅ 2 3 , n 为大于 1 奇数 \begin{aligned}I_n=\int^{\frac\pi2}_0\sin^nxdx=\int^{\frac\pi2}_0\cos^nxdx=\begin{cases}\frac{n-1}n\cdot\frac{n-3}{n-2}\cdots\frac34\cdot\frac12\cdot\frac\pi2,n\text{为偶数}\\\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdots\frac45\cdot\frac23,n\text{为大于}1\text{奇数}\end{cases}\end{aligned} In=02πsinnxdx=02πcosnxdx={nn1n2n343212π,n为偶数nn1n2n35432,n为大于1奇数
证明:
I n = ∫ 0 π 2 sin ⁡ n x d x = − ∫ 0 π 2 sin ⁡ n − 1 x d x d cos ⁡ x = − sin ⁡ n − 1 x ⋅ cos ⁡ x ∣ 0 π 2 + ∫ 0 π 2 cos ⁡ x d sin ⁡ n − 1 x = 0 + ( n − 1 ) ∫ 0 π 2 cos ⁡ 2 x sin ⁡ n − 2 x d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x d x − ( n − 1 ) ∫ 0 π 2 sin ⁡ n x d x = ( n − 1 ) I n − 2 − ( n − 1 ) I n \begin{aligned}I_n&=\int^\frac\pi2_0\sin^nxdx\\&=-\int^\frac\pi2_0\sin^{n-1}xdxd\cos x\\&=-\sin^{n-1}x\cdot\cos x\Big|^\frac\pi2_0+\int^\frac\pi2_0\cos xd\sin^{n-1}x\\&=0+(n-1)\int^\frac\pi2_0\cos^2x\sin^{n-2}xdx\\&=(n-1)\int^\frac\pi2_0\sin^{n-2}xdx-(n-1)\int^\frac\pi2_0\sin^nxdx\\&=(n-1)I_{n-2}-(n-1)I_n\end{aligned} In=02πsinnxdx=02πsinn1xdxdcosx=sinn1xcosx 02π+02πcosxdsinn1x=0+(n1)02πcos2xsinn2xdx=(n1)02πsinn2xdx(n1)02πsinnxdx=(n1)In2(n1)In
I n = ( n − 1 ) I n − 2 − ( n − 1 ) I n n I n = ( n − 1 ) I n − 2 ⇒ I n = n − 1 n I n − 2 I n − 2 = n − 3 n − 2 I n − 4 推广 I 2 m = 2 m − 1 2 m ⋅ 2 m − 3 2 m − 2 ⋯ 5 6 3 4 1 2 ⋅ I 0 I 2 m + 1 = 2 m 2 m + 1 ⋅ 2 m − 2 2 m − 1 ⋯ 4 5 2 3 ⋅ I 1 I 0 = ∫ 0 π 2 sin ⁡ 0 x = π 2 , I 1 = π 2 0 sin ⁡ x d x = 1 \begin{aligned}\\I_n&=(n-1)I_{n-2}-(n-1)I_n\\nI_n&=(n-1)I_{n-2}\Rightarrow I_n=\frac{n-1}nI_{n-2}\\I_{n-2}&=\frac{n-3}{n-2}I_{n-4}\\&\text{推广}\\I_{2m}&=\frac{2m-1}{2m}\cdot\frac{2m-3}{2m-2}\cdots\frac56\frac34\frac12\cdot I_0\\I_{2m+1}&=\frac{2m}{2m+1}\cdot\frac{2m-2}{2m-1}\cdots\frac45\frac23\cdot I_1\\I_0&=\int^\frac\pi2_0\sin^0x=\frac\pi2,I_1=\frac\pi2_0\sin xdx=1\end{aligned} InnInIn2I2mI2m+1I0=(n1)In2(n1)In=(n1)In2In=nn1In2=n2n3In4推广=2m2m12m22m3654321I0=2m+12m2m12m25432I1=02πsin0x=2π,I1=2π0sinxdx=1
代入 I 2 m , I 2 m − 1 I_{2m},I_{2m-1} I2m,I2m1即可得到原式
证毕

和差化积公式

{ sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \left\{\begin{aligned}\sin\alpha+\sin\beta&=2\sin\frac{\alpha+\beta}2\cos\frac{\alpha-\beta}2\\\sin\alpha-\sin\beta&=2\cos\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2\\\cos\alpha+\cos\beta&=2\cos\frac{\alpha+\beta}2\cos\frac{\alpha-\beta}2\\\cos\alpha-\cos\beta&=-2\sin\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2\end{aligned}\right. sinα+sinβsinαsinβcosα+cosβcosαcosβ=2sin2α+βcos2αβ=2cos2α+βsin2αβ=2cos2α+βcos2αβ=2sin2α+βsin2αβ
例6:求 ∫ − π 2 π 2 cos ⁡ x cos ⁡ 2 x d x \int^\frac\pi2_{-\frac\pi2}\cos x\cos2xdx 2π2πcosxcos2xdx
∫ − π 2 π 2 cos ⁡ x cos ⁡ 2 x d x = 1 2 ∫ − π 2 π 2 ( cos ⁡ 3 x + cos ⁡ x ) d x = 1 2 ( 1 3 sin ⁡ 3 x + sin ⁡ x ) ∣ − π 2 π 2 = 2 3 \begin{aligned}\int^\frac\pi2_{-\frac\pi2}\cos x\cos2xdx&=\frac12\int^\frac\pi2_{-\frac\pi2}(\cos3x+\cos x)dx\\&=\frac12(\frac13\sin3x+\sin x)\Big|^\frac\pi2_{-\frac\pi2}\\&=\frac23\end{aligned} 2π2πcosxcos2xdx=212π2π(cos3x+cosx)dx=21(31sin3x+sinx) 2π2π=32

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值