【概率论】随机变量的数字特征

数学期望

一、定义

1. 一维离散型随机变量

设离散型随机变量 X X X的分布律为 P { X = x i } = p i . i = 1 , 2 , ⋯ P\{X=x_{i}\}=p_{i}.i=1,2,\cdots P{ X=xi}=pi.i=1,2,,则随机变量 X X X的数学期望为 ∑ i = 1 ∞ x i p i \sum\limits^{\infty}_{i=1}x_{i}p_{i} i=1xipi,记为 E X EX EX,即 E X = ∑ i = 1 ∞ x i p i EX=\sum\limits^{\infty}_{i=1}x_{i}p_{i} EX=i=1xipi

推广:若离散型随机变量 X X X的分布律为 P { X = x i } = p i , i = 1 , 2 , ⋯ P\{X=x_{i}\}=p_{i},i=1,2,\cdots P{ X=xi}=pi,i=1,2, Y Y Y是随机变量 X X X的函数: Y = g ( X ) Y=g(X) Y=g(X),其中 g g g为连续函数,则 E Y = E [ g ( X ) ] = ∑ i = 1 ∞ g ( x i ) p i EY=E[g(X)]=\sum\limits^{\infty}_{i=1}g(x_{i})p_{i} EY=E[g(X)]=i=1g(xi)pi

2. 一维连续型随机变量

设连续型随机变量 X X X的概率密度 f ( x ) f(x) f(x),则随机变量的数学期望 ∫ − ∞ + ∞ x f ( x ) d x \int^{+\infty}_{-\infty }xf(x)dx +xf(x)dx,记为 E X EX EX,即 E X = ∫ − ∞ + ∞ x f ( x ) d x EX=\int^{+\infty}_{-\infty}xf(x)dx EX=+xf(x)dx

推广:若连续型随机变量 X X X的概率密度为 f ( x ) f(x) f(x) Y Y Y是随机变量 X X X的函数: Y = g ( X ) Y=g(X) Y=g(X),其中 g g g为连续函数,则 E Y = ∫ − ∞ + ∞ g ( x ) f ( x ) d x EY=\int^{+\infty}_{-\infty}g(x)f(x)dx EY=+g(x)f(x)dx

例1:设 X ∼ P ( λ ) X\sim P(\lambda) XP(λ),求 E X EX EX
P { x = k } = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯   , λ > 0 P\{x=k\}=\frac{\lambda^{k}}{k!}e^{-\lambda},k=0,1,2,\cdots,\lambda>0 P{ x=k}=k!λkeλ,k=0,1,2,,λ>0

E X = ∑ k = 0 ∞ k ⋅ λ k k ! e − λ = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! k = 0 时, ( k − 1 ) ! 无意义 = λ e − λ ∑ n = 0 ∞ λ n n ! 此处使用无穷数级 e x = ∑ n = 0 ∞ x n n = λ e − λ e λ = λ \begin{aligned}EX&=\sum\limits^{\infty}_{k=0}k\cdot \frac{\lambda^{k}}{k!}e^{-\lambda}\\&=\lambda e^{-\lambda}\sum\limits^{\infty}_{k=1}\frac{\lambda^{k-1}}{(k-1)!}\quad k=0\text{时,}(k-1)!\text{无意义}\\&=\lambda e^{-\lambda}\sum\limits ^{\infty}_{n=0}\frac{\lambda^{n}}{n!}\\&\text{此处使用无穷数级}e^{x}=\sum\limits^{\infty}_{n=0}\frac{x^{n}}{n}\\&=\lambda e^{-\lambda}e^{\lambda}\\&=\lambda\end{aligned} EX=k=0kk!λkeλ=λeλk=1(k1)!λk1k=0时,(k1)!无意义=λeλn=0n!λn此处使用无穷数级ex=n=0nxn=λeλeλ=λ
E X = λ EX=\lambda EX=λ

例2:设 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b),求 E X EX EX
f ( x ) = { 1 b − a , a < x < b 0 , 其他 f(x)=\begin{cases}\frac{1}{b-a},a<x<b\\0,\text{其他}\end{cases} f(x)={ ba1,a<x<b0,其他

E X = ∫ − ∞ + ∞ x f ( x ) d x = ∫ a b x b − a d x = 1 2 1 b − a x 2 ∣ a b = a + b 2 \begin{aligned}EX&=\int^{+\infty}_{-\infty}xf(x)dx\\&=\int^{b}_{a}\frac{x}{b-a}dx\\&=\frac{1}{2}\frac{1}{b-a}x^{2}\Big|^{b}_{a}\\&=\frac{a+b}{2}\end{aligned} EX=+xf(x)dx=ab<

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值