【线性代数基础进阶】向量-补充+练习 & 线性方程组-练习

本文深入探讨了线性代数中的向量组秩和线性方程组解的性质。讨论了向量组的线性相关性、极大线性无关组的概念,以及如何通过向量的线性组合来分析线性方程组的解。同时,通过例题进一步解释了向量加法的线性无关性,并展示了如何计算和理解矩阵的秩。
摘要由CSDN通过智能技术生成

概念和定理

向量

α 1 , α 2 , ⋯   , α r \alpha_{1},\alpha_{2},\cdots,\alpha_{r} α1,α2,,αr α 1 , α 2 , ⋯   , α r , ⋯   , α s ( 其中 s ≥ r ) \alpha_{1},\alpha_{2},\cdots,\alpha_{r},\cdots,\alpha_{s}(其中s\geq r) α1,α2,,αr,,αs(其中sr),称 α 1 , α 2 , ⋯   , α r \alpha_{1},\alpha_{2},\cdots,\alpha_{r} α1,α2,,αr α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs的部分组, α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs是整体组

向量组 α 1 = ( a 11 , a 21 , ⋯   , a r 1 ) T , α 2 = ( a 12 , a 22 , ⋯   , a r 2 ) T , ⋯   , α m 1 = ( a 1 m , a 2 m , ⋯   , a r m ) T \alpha_{1}=(a_{11},a_{21},\cdots,a_{r1})^{T},\alpha_{2}=(a_{12},a_{22},\cdots,a_{r2})^{T},\cdots,\alpha_{m1}=(a_{1m},a_{2m},\cdots,a_{rm})^{T} α1=(a11,a21,,ar1)T,α2=(a12,a22,,ar2)T,,αm1=(a1m,a2m,,arm)T α 1 ~ = ( a 11 , a 21 , ⋯   , a r 1 , ⋯   , a s 1 ) T , α 2 ~ = ( a 12 , a 22 , ⋯   , a r 2 , ⋯   , a s 2 ) T , ⋯   , α m ~ = ( a 1 m , a 2 m , ⋯   , a r m , ⋯   , a s m ) T \widetilde{\alpha_{1}}=(a_{11},a_{21},\cdots,a_{r1},\cdots,a_{s1})^{T},\widetilde{\alpha_{2}}=(a_{12},a_{22},\cdots,a_{r2},\cdots,a_{s2})^{T},\cdots,\widetilde{\alpha_{m}}=(a_{1m},a_{2m},\cdots,a_{rm},\cdots,a_{sm})^{T} α1 =(a11,a21,,ar1,,as1)T,α2 =(a12,a22,,ar2,,as2)T,,αm =(a1m,a2m,,arm,,asm)T,则称 α 1 ~ , α 2 ~ , ⋯   , α m ~ \widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}} α1 ,α2 ,,αm 为向量组 α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm的延伸组(或称 α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm α 1 ~ , α 2 ~ , ⋯   , α m ~ \widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}} α1 ,α2 ,,αm 的缩短组)

定理:
任何部分组 α 1 , α 2 , ⋯   , α r \alpha_{1},\alpha_{2},\cdots,\alpha_{r} α1,α2,,αr相关 ⇒ \Rightarrow 整体组
α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs相关
整体组 α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs无关
⇒ \Rightarrow 任何部分组
α 1 , α 2 , ⋯   , α r \alpha_{1},\alpha_{2},\cdots,\alpha_{r} α1,α2,,αr无关,反之都不成立

定理:
α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm线性无关 ⇒ \Rightarrow 延伸组 α 1 ~ , α 2 ~ , ⋯   , α m ~ \widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}} α1 ,α2 ,,αm 线性无关
α 1 ~ , α 2 ~ , ⋯   , α m ~ \widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}} α1 ,α2 ,,αm 线性相关 ⇒ α 1 , α 2 , ⋯   , α m \Rightarrow \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm线性相关

向量组的秩

向量组的极大线性无关组的向量个数称为向量组的秩,记为 r ( α 1 , α 2 , ⋯   , α s ) r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) r(α1,α2,,αs)

线性相关例题进一步说明

例:
已知 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性无关,证明 α 1 + α 2 , α 2 + α 3 , α 3 + α 1 \alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1} α1+α2,α2+α3,α3+α1线性无关

已知某向量组 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn线性无关,推新的向量组 β 1 , β 2 , ⋯   , β s \beta_{1},\beta_{2},\cdots,\beta_{s} β1,β2,,βs线性无关大致思路,设
k 1 β 1 + k 2 β 2 + ⋯ + k s β s = 0 k_{1}\beta_{1}+k_{2}\beta_{2}+\cdots+k_{s}\beta_{s}=0 k1β1+k2β2++ksβs=0
α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn化简,即类似
m 1 α 1 + m 2 α 2 + ⋯ + m n α n = 0 m_{1}\alpha_{1}+m_{2}\alpha_{2}+\cdots+m_{n}\alpha_{n}=0 m1α1+m2α2++mnαn=0
其中 m 1 , ⋯   , m n m_{1},\cdots,m_{n} m1,,mn k 1 , ⋯   , k s k_{1},\cdots,k_{s} k1,,ks表示,通过条件
b 1 α 1 + b 2 α 2 + ⋯ + b n α n = 0 b_{1}\alpha_{1}+b_{2}\alpha_{2}+\cdots+b_{n}\alpha_{n}=0 b1α1+b2α2++bnαn=0
只有当 b 1 = b 2 = ⋯ = b n = 0 b_{1}=b_{2}=\cdots=b_{n}=0 b1=b2==bn=0时上式成立,证明
k 1 = k 2 = ⋯ = k s = 0 k_{1}=k_{2}=\cdots=k_{s}=0 k1=k2==ks=0


k 1 ( α 1 + α 2 ) + k 2 ( α 2 + α 3 ) + k 3 ( α 3 + α 1 ) = 0 ( k 1 + k 3 ) α 1 + ( k 1 + k 2 ) α 2 + ( k 2 + k 3 ) α 3 = 0 \begin{aligned} k_{1}(\alpha_{1}+\alpha_{2})+k_{2}(\alpha_{2}+\alpha_{3})+k_{3}(\alpha_{3}+\alpha_{1})&=0\\ (k_{1}+k_{3})\alpha_{1}+(k_{1}+k_{2})\alpha_{2}+(k_{2}+k_{3})\alpha_{3}&=0 \end{aligned} k1(α1+α2)+k2(α2+α3)+k3(α3+α1)(k1+k3)α1+(k1+k2)α2+(k2+k3)α3=0=0
因为 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性无关
{ k 1 + k 3 = 0 k 1 + k 2 = 0 k 2 + k 3 = 0 (1) \begin{cases} k_{1}+k_{3}=0 \\ k_{1}+k_{2}=0 \\ k_{2}+k_{3}=0 \end{cases}\tag{1} k1+k3=0k1+k2=0k2+k3=0(1)

∣ 1 0 1 1 1 0 0 1 1 ∣ = 2 ≠ 0 \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}=2\ne0 110011101 =2=0
齐次方程组 ( 1 ) (1) (1)只有 0 0 0解,即必有 k 1 = 0 , k 2 = 0 , k 3 = 0 k_{1}=0,k_{2}=0,k_{3}=0 k1=0,k2=0,k3=0,因此 α 1 + α 2 , α 2 + α 3 , α 3 + α 1 \alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1} α1+α2,α2+α3,α3+α1线性无关

已知 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性无关,无法证明 α 1 − α 2 , α 2 − α 3 , α 3 − α 1 \alpha_{1}-\alpha_{2},\alpha_{2}-\alpha_{3},\alpha_{3}-\alpha_{1} α1α2,α2α3,α3α1线性无关


k 1 ( α 1 − α 2 ) + k 2 ( α 2 − α 3 ) + k 3 ( α 3 − α 1 ) = 0 ( k 1 − k 3 ) α 1 + ( k 2 − k 1 ) α 2 + ( k 3 − k 2 ) α 3 = 0 \begin{aligned} k_{1}(\alpha_{1}-\alpha_{2})+k_{2}(\alpha_{2}-\alpha_{3})+k_{3}(\alpha_{3}-\alpha_{1})&=0\\ (k_{1}-k_{3})\alpha_{1}+(k_{2}-k_{1})\alpha_{2}+(k_{3}-k_{2})\alpha_{3}&=0 \end{aligned} k1(α1α2)+k2(α2α3)+k3(α3α1)(k1k3)α1+(k2k1)α2+(k3k2)α3=0=0
因为 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性无关
{ k 1 − k 3 = 0 k 2 − k 1 = 0 k 3 − k 2 = 0 (1) \begin{cases} k_{1}-k_{3}=0 \\ k_{2}-k_{1}=0 \\ k_{3}-k_{2}=0 \end{cases}\tag{1} k1k3=0k2k1=0k3k2=0(1)

∣ 1 0 − 1 − 1 1 0 0 − 1 1 ∣ = 0 \begin{vmatrix} 1 & 0 & -1 \\-1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix}=0 110011101 =0
齐次方程组 ( 1 ) (1) (1)有非零解,无法证明 k 1 = 0 , k 2 = 0 , k 3 = 0 k_{1}=0,k_{2}=0,k_{3}=0 k1=0,k2=0,k3=0,因此无法证明 α 1 − α 2 , α 2 − α 3 , α 3 − α 1 \alpha_{1}-\alpha_{2},\alpha_{2}-\alpha_{3},\alpha_{3}-\alpha_{1} α1α2,α2α3,α3α1线性无关

例:向量组 ( 1 ) : α 1 , α 2 , α 3 ; ( 2 ) : α 1 , α 2 , α 3 , α 4 ; ( 3 ) : α 1 , α 2 , α 3 , α 5 (1):\alpha_{1},\alpha_{2},\alpha_{3};(2):\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4};(3):\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5} (1):α1,α2,α3;(2):α1,α2,α3,α4;(3):α1,α2,α3,α5,若秩 r ( 1 ) = 3 , r ( 2 ) = 3 , r ( 3 ) = 4 r(1)=3,r(2)=3,r(3)=4 r(1)=3,r(2)=3,r(3)=4,则 r ( α 1 , α 2 , α 3 , α 4 + α 5 ) = ( ) r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=() r(α1,α2,α3,α4+α5)=()

r ( 1 ) = 3 r(1)=3 r(1)=3知, α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性无关
r ( 2 ) = 4 r(2)=4 r(2)=4知, α 1 , α 2 , α 3 , α 4 \alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4} α1,α2,α3,α4线性相关
α 4 \alpha_{4} α4可以由

以下可以用分析或计算

α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性表出,那么向量组 α 1 , α 2 , α 3 , α 5 \alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5} α1,α2,α3,α5 α 1 , α 2 , α 3 , α 4 + α 5 \alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5} α1,α2,α3,α4+α5可以相互线性表示,即向量组等价
所以 r ( α 1 , α 2 , α 3 , α 4 + α 5 ) = r ( 3 ) = 4 r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=r(3)=4 r(α1,α2,α3,α4+α5)=r(3)=4
或用计算
α 4 = k 1 α 1 + k 2 α 2 + k 3 α 3 \alpha_{4}=k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3} α4=k1α1+k2α2+k3α3,则
( α 1 , α 2 , α 3 , α 4 + α 5 ) = ( α 1 , α 2 , α 3 , k 1 α 1 + k 2 α 2 + k 3 α 3 + α 5 ) = ( α 1 , α 2 , α 3 , α 5 ) ( 1 0 0 k 1 0 1 0 k 2 0 0 1 k 3 0 0 0 1 ) \begin{aligned} (\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})&=(\alpha_{1},\alpha_{2},\alpha_{3},k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3}+\alpha_{5})\\ &=(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5})\begin{pmatrix} 1 & 0 & 0 & k_{1} \\ 0 & 1 & 0 & k_{2} \\ 0 & 0 & 1 & k_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned} (α1,α2,α3,α4+α5)=(α1,α2,α3,k1α1+k2α2+k3α3+α5)=(α1,α2,α3,α5) 100001000010k1k2k31
由于矩阵 ( 1 0 0 k 1 0 1 0 k 2 0 0 1 k 3 0 0 0 1 ) \begin{pmatrix}1 & 0 & 0 & k_{1} \\ 0 & 1 & 0 & k_{2} \\ 0 & 0 & 1 & k_{3} \\ 0 & 0 & 0 & 1\end{pmatrix} 100001000010k1k2k31 可逆,故 r ( α 1 , α 2 , α 3 , α 4 + α 5 ) = r ( 3 ) = 4 r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=r(3)=4 r(α1,α2,α3,α4+α5)=r(3)=4

矩阵的秩

例:设 A , B A,B A,B都是 n n n阶非零矩阵,且 A B = O AB=O AB=O,证明 A A A B B B的秩都小于 n n n

不会0_o,以后会补上的

正交规范化、正交矩阵在特征值和特征向量里

A x = b Ax=b Ax=b解的性质

例:设 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3是四元非齐次线性方程组 A x = b Ax=b Ax=b的三个就行了,且秩 r ( A ) = 3 r(A)=3 r(A)=3 α 1 = ( 1 , 2 , 3 , 4 ) T , α 2 + α 3 = ( 0 , 1 , 2 , 3 ) T \alpha_{1}=(1,2,3,4)^{T},\alpha_{2}+\alpha_{3}=(0,1,2,3)^{T} α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,则方程组 A x = b Ax=b Ax=b的通解是()

由于 n − r ( A ) = 4 − 3 = 1 n-r(A)=4-3=1 nr(A)=43=1,所以方程组通解形式为 α + k η \alpha+k \eta α+kη,现在特解已知可取 α 1 \alpha_{1} α1,下面就是应找出导出组 A x = 0 Ax=0 Ax=0的一个非零解
因为 A a i = b , ( i = 1 , 2 , 3 ) A a_{i}=b,(i=1,2,3) Aai=b,(i=1,2,3),有 A [ 2 α 1 − ( α 2 + α 3 ) ] = 0 A[2\alpha_{1}-(\alpha_{2}+\alpha_{3})]=0 A[2α1(α2+α3)]=0,即
2 α 1 − ( α 2 + α 3 ) = ( 2 , 3 , 4 , 5 ) T 2\alpha_{1}-(\alpha_{2}+\alpha_{3})=(2,3,4,5)^{T} 2α1(α2+α3)=(2,3,4,5)T
A x = 0 Ax=0 Ax=0的一个非零解,于是方程组通解为 ( 1 , 2 , 3 , 4 ) T + k ( 2 , 3 , 4 , 5 ) T (1,2,3,4)^{T}+k(2,3,4,5)^{T} (1,2,3,4)T+k(2,3,4,5)T k k k是任意常数

### 回答1: MIT线性代数中文PDF是一本非常优秀的线性代数教材。这本书的中文翻译非常准确,通俗易懂,对于初学者而言非常友好。教材的讲解非常清晰,详细地介绍了线性代数中的各个概念、定理及其应用,涵盖了向量矩阵、行列式、线性方程组、特征向量、正交性等基础知识。此外,教材还提供了大量的例题和习题,以便读者提高自己的理解和掌握能力。 值得一提的是,教材在内容和趣味性上都非常出色。作者通过直观的图形、实例和生动的描述,使得抽象的数学概念变得具体和易于理解。这对于那些非数学专业的学生而言尤其重要。此外,教材还介绍了线性代数在各个领域中的应用,如计算机图形学、数据挖掘、量子力学等,既拓宽了读者的视野,也让读者更好地了解线性代数的实际应用。 总之,MIT线性代数中文PDF是一本值得一读的线性代数入门教材。它准确且通俗易懂的语言、丰富多彩的例题和习题、以及有趣而实用的应用实例,都使得这本书成为理解线性代数的必备工具。 ### 回答2: MIT线性代数课程是全球著名的高等数学课程之一,具有较高的教学水平和广泛的应用价值。其提供了丰富的线性代数知识,包括向量空间、线性变换、矩阵变换、特征值和特征向量等内容,让学生掌握了领域内的基本概念和方法。 MIT线性代数中文PDF是其课程前沿的教材之一,由著名数学家Gilbert Strang撰写,全文以清晰易懂的语言、大量的例子和图表演示,为初学者提供了很好的自学资料。此外,该教材也广泛应用于高校和研究机构,成为线性代数课程中的主要参考书之一。通过MIT线性代数中文PDF的学习,我们可以真正理解线性代数的基本概念和应用,掌握其在实际问题中的解决方法,提高研究生涯的实用性和导向性。 总之, MIT线性代数中文PDF是一种非常优秀、深入易懂的线性代数教材,对学生和研究人员都具有重要的意义。它将线性代数理论和实际应用结合起来,为我们提供了一个重要的学习和应用平台。因此,它也是我们实现自我提升和提高学术水平的重要工具。 ### 回答3: MIT线性代数中文PDF是一份非常权威的数学教材,其内容涵盖了线性代数基础知识和进阶部分。该教材旨在帮助读者理解线性代数的概念和技能,并将它们应用于数学、工程和科学的各种领域。 该PDF以中文语言呈现,为母语为中文的读者提供了更加轻松的阅读体验。同时,该教材不仅涵盖了线性代数基础知识,还包含了线性方程组矩阵分解、本征值和本征向量等深入的概念,对于进一步学习数学和工程等学科会非常有帮助。 此外,该教材还给出了大量的例子和练习题,可以帮助读者巩固所学知识并提高自己的解题能力。如果读者希望检测自己的学习成果,该书还提供了答案和解析,方便读者进行自我检测和提高。 总之,MIT线性代数中文PDF是一份非常好的线性代数教材,无论是想要学习数学还是工程等科学领域的读者,均可从中受益。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值