概念和定理
向量
α 1 , α 2 , ⋯ , α r \alpha_{1},\alpha_{2},\cdots,\alpha_{r} α1,α2,⋯,αr及 α 1 , α 2 , ⋯ , α r , ⋯ , α s ( 其中 s ≥ r ) \alpha_{1},\alpha_{2},\cdots,\alpha_{r},\cdots,\alpha_{s}(其中s\geq r) α1,α2,⋯,αr,⋯,αs(其中s≥r),称 α 1 , α 2 , ⋯ , α r \alpha_{1},\alpha_{2},\cdots,\alpha_{r} α1,α2,⋯,αr是 α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs的部分组, α 1 , α 2 , ⋯ , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,⋯,αs是整体组
向量组 α 1 = ( a 11 , a 21 , ⋯ , a r 1 ) T , α 2 = ( a 12 , a 22 , ⋯ , a r 2 ) T , ⋯ , α m 1 = ( a 1 m , a 2 m , ⋯ , a r m ) T \alpha_{1}=(a_{11},a_{21},\cdots,a_{r1})^{T},\alpha_{2}=(a_{12},a_{22},\cdots,a_{r2})^{T},\cdots,\alpha_{m1}=(a_{1m},a_{2m},\cdots,a_{rm})^{T} α1=(a11,a21,⋯,ar1)T,α2=(a12,a22,⋯,ar2)T,⋯,αm1=(a1m,a2m,⋯,arm)T及 α 1 ~ = ( a 11 , a 21 , ⋯ , a r 1 , ⋯ , a s 1 ) T , α 2 ~ = ( a 12 , a 22 , ⋯ , a r 2 , ⋯ , a s 2 ) T , ⋯ , α m ~ = ( a 1 m , a 2 m , ⋯ , a r m , ⋯ , a s m ) T \widetilde{\alpha_{1}}=(a_{11},a_{21},\cdots,a_{r1},\cdots,a_{s1})^{T},\widetilde{\alpha_{2}}=(a_{12},a_{22},\cdots,a_{r2},\cdots,a_{s2})^{T},\cdots,\widetilde{\alpha_{m}}=(a_{1m},a_{2m},\cdots,a_{rm},\cdots,a_{sm})^{T} α1 =(a11,a21,⋯,ar1,⋯,as1)T,α2 =(a12,a22,⋯,ar2,⋯,as2)T,⋯,αm =(a1m,a2m,⋯,arm,⋯,asm)T,则称 α 1 ~ , α 2 ~ , ⋯ , α m ~ \widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}} α1 ,α2 ,⋯,αm 为向量组 α 1 , α 2 , ⋯ , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,⋯,αm的延伸组(或称 α 1 , α 2 , ⋯ , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,⋯,αm是 α 1 ~ , α 2 ~ , ⋯ , α m ~ \widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}} α1 ,α2 ,⋯,αm 的缩短组)
定理:
任何部分组
α
1
,
α
2
,
⋯
,
α
r
\alpha_{1},\alpha_{2},\cdots,\alpha_{r}
α1,α2,⋯,αr相关
⇒
\Rightarrow
⇒整体组
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs相关
整体组
α
1
,
α
2
,
⋯
,
α
s
\alpha_{1},\alpha_{2},\cdots,\alpha_{s}
α1,α2,⋯,αs无关
⇒
\Rightarrow
⇒任何部分组
α
1
,
α
2
,
⋯
,
α
r
\alpha_{1},\alpha_{2},\cdots,\alpha_{r}
α1,α2,⋯,αr无关,反之都不成立
定理:
α
1
,
α
2
,
⋯
,
α
m
\alpha_{1},\alpha_{2},\cdots,\alpha_{m}
α1,α2,⋯,αm线性无关
⇒
\Rightarrow
⇒延伸组
α
1
~
,
α
2
~
,
⋯
,
α
m
~
\widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}}
α1
,α2
,⋯,αm
线性无关
α
1
~
,
α
2
~
,
⋯
,
α
m
~
\widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}}
α1
,α2
,⋯,αm
线性相关
⇒
α
1
,
α
2
,
⋯
,
α
m
\Rightarrow \alpha_{1},\alpha_{2},\cdots,\alpha_{m}
⇒α1,α2,⋯,αm线性相关
向量组的秩
向量组的极大线性无关组的向量个数称为向量组的秩,记为 r ( α 1 , α 2 , ⋯ , α s ) r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) r(α1,α2,⋯,αs)
线性相关例题进一步说明
例:
已知
α
1
,
α
2
,
α
3
\alpha_{1},\alpha_{2},\alpha_{3}
α1,α2,α3线性无关,证明
α
1
+
α
2
,
α
2
+
α
3
,
α
3
+
α
1
\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1}
α1+α2,α2+α3,α3+α1线性无关
已知某向量组 α 1 , α 2 , ⋯ , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,⋯,αn线性无关,推新的向量组 β 1 , β 2 , ⋯ , β s \beta_{1},\beta_{2},\cdots,\beta_{s} β1,β2,⋯,βs线性无关大致思路,设
k 1 β 1 + k 2 β 2 + ⋯ + k s β s = 0 k_{1}\beta_{1}+k_{2}\beta_{2}+\cdots+k_{s}\beta_{s}=0 k1β1+k2β2+⋯+ksβs=0
向 α 1 , α 2 , ⋯ , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,⋯,αn化简,即类似
m 1 α 1 + m 2 α 2 + ⋯ + m n α n = 0 m_{1}\alpha_{1}+m_{2}\alpha_{2}+\cdots+m_{n}\alpha_{n}=0 m1α1+m2α2+⋯+mnαn=0
其中 m 1 , ⋯ , m n m_{1},\cdots,m_{n} m1,⋯,mn由 k 1 , ⋯ , k s k_{1},\cdots,k_{s} k1,⋯,ks表示,通过条件
b 1 α 1 + b 2 α 2 + ⋯ + b n α n = 0 b_{1}\alpha_{1}+b_{2}\alpha_{2}+\cdots+b_{n}\alpha_{n}=0 b1α1+b2α2+⋯+bnαn=0
只有当 b 1 = b 2 = ⋯ = b n = 0 b_{1}=b_{2}=\cdots=b_{n}=0 b1=b2=⋯=bn=0时上式成立,证明
k 1 = k 2 = ⋯ = k s = 0 k_{1}=k_{2}=\cdots=k_{s}=0 k1=k2=⋯=ks=0
设
k
1
(
α
1
+
α
2
)
+
k
2
(
α
2
+
α
3
)
+
k
3
(
α
3
+
α
1
)
=
0
(
k
1
+
k
3
)
α
1
+
(
k
1
+
k
2
)
α
2
+
(
k
2
+
k
3
)
α
3
=
0
\begin{aligned} k_{1}(\alpha_{1}+\alpha_{2})+k_{2}(\alpha_{2}+\alpha_{3})+k_{3}(\alpha_{3}+\alpha_{1})&=0\\ (k_{1}+k_{3})\alpha_{1}+(k_{1}+k_{2})\alpha_{2}+(k_{2}+k_{3})\alpha_{3}&=0 \end{aligned}
k1(α1+α2)+k2(α2+α3)+k3(α3+α1)(k1+k3)α1+(k1+k2)α2+(k2+k3)α3=0=0
因为
α
1
,
α
2
,
α
3
\alpha_{1},\alpha_{2},\alpha_{3}
α1,α2,α3线性无关
{
k
1
+
k
3
=
0
k
1
+
k
2
=
0
k
2
+
k
3
=
0
(1)
\begin{cases} k_{1}+k_{3}=0 \\ k_{1}+k_{2}=0 \\ k_{2}+k_{3}=0 \end{cases}\tag{1}
⎩
⎨
⎧k1+k3=0k1+k2=0k2+k3=0(1)
由
∣
1
0
1
1
1
0
0
1
1
∣
=
2
≠
0
\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}=2\ne0
∣
∣110011101∣
∣=2=0
齐次方程组
(
1
)
(1)
(1)只有
0
0
0解,即必有
k
1
=
0
,
k
2
=
0
,
k
3
=
0
k_{1}=0,k_{2}=0,k_{3}=0
k1=0,k2=0,k3=0,因此
α
1
+
α
2
,
α
2
+
α
3
,
α
3
+
α
1
\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1}
α1+α2,α2+α3,α3+α1线性无关
已知 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性无关,无法证明 α 1 − α 2 , α 2 − α 3 , α 3 − α 1 \alpha_{1}-\alpha_{2},\alpha_{2}-\alpha_{3},\alpha_{3}-\alpha_{1} α1−α2,α2−α3,α3−α1线性无关
设
k
1
(
α
1
−
α
2
)
+
k
2
(
α
2
−
α
3
)
+
k
3
(
α
3
−
α
1
)
=
0
(
k
1
−
k
3
)
α
1
+
(
k
2
−
k
1
)
α
2
+
(
k
3
−
k
2
)
α
3
=
0
\begin{aligned} k_{1}(\alpha_{1}-\alpha_{2})+k_{2}(\alpha_{2}-\alpha_{3})+k_{3}(\alpha_{3}-\alpha_{1})&=0\\ (k_{1}-k_{3})\alpha_{1}+(k_{2}-k_{1})\alpha_{2}+(k_{3}-k_{2})\alpha_{3}&=0 \end{aligned}
k1(α1−α2)+k2(α2−α3)+k3(α3−α1)(k1−k3)α1+(k2−k1)α2+(k3−k2)α3=0=0
因为
α
1
,
α
2
,
α
3
\alpha_{1},\alpha_{2},\alpha_{3}
α1,α2,α3线性无关
{
k
1
−
k
3
=
0
k
2
−
k
1
=
0
k
3
−
k
2
=
0
(1)
\begin{cases} k_{1}-k_{3}=0 \\ k_{2}-k_{1}=0 \\ k_{3}-k_{2}=0 \end{cases}\tag{1}
⎩
⎨
⎧k1−k3=0k2−k1=0k3−k2=0(1)
由
∣
1
0
−
1
−
1
1
0
0
−
1
1
∣
=
0
\begin{vmatrix} 1 & 0 & -1 \\-1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix}=0
∣
∣1−1001−1−101∣
∣=0
齐次方程组
(
1
)
(1)
(1)有非零解,无法证明
k
1
=
0
,
k
2
=
0
,
k
3
=
0
k_{1}=0,k_{2}=0,k_{3}=0
k1=0,k2=0,k3=0,因此无法证明
α
1
−
α
2
,
α
2
−
α
3
,
α
3
−
α
1
\alpha_{1}-\alpha_{2},\alpha_{2}-\alpha_{3},\alpha_{3}-\alpha_{1}
α1−α2,α2−α3,α3−α1线性无关
秩
例:向量组 ( 1 ) : α 1 , α 2 , α 3 ; ( 2 ) : α 1 , α 2 , α 3 , α 4 ; ( 3 ) : α 1 , α 2 , α 3 , α 5 (1):\alpha_{1},\alpha_{2},\alpha_{3};(2):\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4};(3):\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5} (1):α1,α2,α3;(2):α1,α2,α3,α4;(3):α1,α2,α3,α5,若秩 r ( 1 ) = 3 , r ( 2 ) = 3 , r ( 3 ) = 4 r(1)=3,r(2)=3,r(3)=4 r(1)=3,r(2)=3,r(3)=4,则 r ( α 1 , α 2 , α 3 , α 4 + α 5 ) = ( ) r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=() r(α1,α2,α3,α4+α5)=()
由
r
(
1
)
=
3
r(1)=3
r(1)=3知,
α
1
,
α
2
,
α
3
\alpha_{1},\alpha_{2},\alpha_{3}
α1,α2,α3线性无关
由
r
(
2
)
=
4
r(2)=4
r(2)=4知,
α
1
,
α
2
,
α
3
,
α
4
\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}
α1,α2,α3,α4线性相关
故
α
4
\alpha_{4}
α4可以由
以下可以用分析或计算
α
1
,
α
2
,
α
3
\alpha_{1},\alpha_{2},\alpha_{3}
α1,α2,α3线性表出,那么向量组
α
1
,
α
2
,
α
3
,
α
5
\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}
α1,α2,α3,α5与
α
1
,
α
2
,
α
3
,
α
4
+
α
5
\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5}
α1,α2,α3,α4+α5可以相互线性表示,即向量组等价
所以
r
(
α
1
,
α
2
,
α
3
,
α
4
+
α
5
)
=
r
(
3
)
=
4
r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=r(3)=4
r(α1,α2,α3,α4+α5)=r(3)=4
或用计算
设
α
4
=
k
1
α
1
+
k
2
α
2
+
k
3
α
3
\alpha_{4}=k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3}
α4=k1α1+k2α2+k3α3,则
(
α
1
,
α
2
,
α
3
,
α
4
+
α
5
)
=
(
α
1
,
α
2
,
α
3
,
k
1
α
1
+
k
2
α
2
+
k
3
α
3
+
α
5
)
=
(
α
1
,
α
2
,
α
3
,
α
5
)
(
1
0
0
k
1
0
1
0
k
2
0
0
1
k
3
0
0
0
1
)
\begin{aligned} (\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})&=(\alpha_{1},\alpha_{2},\alpha_{3},k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3}+\alpha_{5})\\ &=(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5})\begin{pmatrix} 1 & 0 & 0 & k_{1} \\ 0 & 1 & 0 & k_{2} \\ 0 & 0 & 1 & k_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}
(α1,α2,α3,α4+α5)=(α1,α2,α3,k1α1+k2α2+k3α3+α5)=(α1,α2,α3,α5)⎝
⎛100001000010k1k2k31⎠
⎞
由于矩阵
(
1
0
0
k
1
0
1
0
k
2
0
0
1
k
3
0
0
0
1
)
\begin{pmatrix}1 & 0 & 0 & k_{1} \\ 0 & 1 & 0 & k_{2} \\ 0 & 0 & 1 & k_{3} \\ 0 & 0 & 0 & 1\end{pmatrix}
⎝
⎛100001000010k1k2k31⎠
⎞可逆,故
r
(
α
1
,
α
2
,
α
3
,
α
4
+
α
5
)
=
r
(
3
)
=
4
r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=r(3)=4
r(α1,α2,α3,α4+α5)=r(3)=4
矩阵的秩
例:设 A , B A,B A,B都是 n n n阶非零矩阵,且 A B = O AB=O AB=O,证明 A A A和 B B B的秩都小于 n n n
不会0_o,以后会补上的
正交规范化、正交矩阵在特征值和特征向量里
A x = b Ax=b Ax=b解的性质
例:设 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3是四元非齐次线性方程组 A x = b Ax=b Ax=b的三个就行了,且秩 r ( A ) = 3 r(A)=3 r(A)=3, α 1 = ( 1 , 2 , 3 , 4 ) T , α 2 + α 3 = ( 0 , 1 , 2 , 3 ) T \alpha_{1}=(1,2,3,4)^{T},\alpha_{2}+\alpha_{3}=(0,1,2,3)^{T} α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,则方程组 A x = b Ax=b Ax=b的通解是()
由于
n
−
r
(
A
)
=
4
−
3
=
1
n-r(A)=4-3=1
n−r(A)=4−3=1,所以方程组通解形式为
α
+
k
η
\alpha+k \eta
α+kη,现在特解已知可取
α
1
\alpha_{1}
α1,下面就是应找出导出组
A
x
=
0
Ax=0
Ax=0的一个非零解
因为
A
a
i
=
b
,
(
i
=
1
,
2
,
3
)
A a_{i}=b,(i=1,2,3)
Aai=b,(i=1,2,3),有
A
[
2
α
1
−
(
α
2
+
α
3
)
]
=
0
A[2\alpha_{1}-(\alpha_{2}+\alpha_{3})]=0
A[2α1−(α2+α3)]=0,即
2
α
1
−
(
α
2
+
α
3
)
=
(
2
,
3
,
4
,
5
)
T
2\alpha_{1}-(\alpha_{2}+\alpha_{3})=(2,3,4,5)^{T}
2α1−(α2+α3)=(2,3,4,5)T
是
A
x
=
0
Ax=0
Ax=0的一个非零解,于是方程组通解为
(
1
,
2
,
3
,
4
)
T
+
k
(
2
,
3
,
4
,
5
)
T
(1,2,3,4)^{T}+k(2,3,4,5)^{T}
(1,2,3,4)T+k(2,3,4,5)T,
k
k
k是任意常数