【白板推导系列笔记】支持向量机-硬间隔SVM-模型定义

支撑向量机(SVM)算法在分类问题中有着重要地位,其主要思想是最大化两类之间的间隔。按照数据集的特点:

  1. 线性可分问题,如之前的感知机算法处理的问题
  2. 线性可分,只有一点点错误点,如感知机算法发展出来的 Pocket 算法处理的问题
  3. 非线性问题,完全不可分,如在感知机问题发展出来的多层感知机和深度学习

作者:tsyw的个人空间_哔哩哔哩_bilibili
链接:支撑向量机 · 语雀 (yuque.com)

![[附件/Pasted image 20221001105442.png|400]]
假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情况。软间隔,就是允许一定量的样本分类错误。

作者:燕双嘤
链接:机器学习:支持向量机(SVM)燕双嘤的博客-CSDN博客 支持向量机

这三种情况对于 SVM 分别有下面三种处理手段:

  1. hard-margin SVM
  2. soft-margin SVM
  3. kernel Method

作者:tsyw的个人空间_哔哩哔哩_bilibili
链接:支撑向量机 · 语雀 (yuque.com)

这里我们先谈硬间隔。在感知机算法中,如果两类线性可分,一般情况下,会存在无穷多条线。在SVM中,一个超平面,不仅能将数据正确分类,而且这个超平面到不同类之间距离最大
数据集为
{ ( x i , y i ) } i = 0 N , x i ∈ R p , y i ∈ { − 1 , 1 } \left\{(x_{i},y_{i})\right\}_{i=0}^{N},x_{i}\in \mathbb{R}^{p},y_{i}\in \left\{-1,1\right\} {(xi,yi)}i=0N,xiRp,yi{1,1}
该超平面可以被写作
ω T x + b = 0 \omega^{T}x+b=0 ωTx+b=0
正确分类数据可表示为
y i ( ω T x i + b ) > 0 , i = 1 , 2 , ⋯   , N y_{i}(\omega^{T}x_{i}+b)>0,i=1,2,\cdots ,N yi(ωTxi+b)>0,i=1,2,,N
因此,最大化数据到超平面的间隔就可以被表达为
{ max ⁡ margin ( ω , b ) s . t . y i ( ω T x i + b ) > 0. i = 1 , 2 , ⋯   , N margin ( ω , b ) = min  ω , b x i , i = 1 , 2 , ⋯ , N distance ( ω , b , x i ) = min  ω , b x i , i = 1 , 2 , ⋯ , N 1 ∣ ∣ ω ∣ ∣ ( ω T x i + b ) \left\{\begin{aligned}&\max \text{margin}(\omega,b)\\ &s.t.y_{i}(\omega^{T}x_{i}+b)>0.i=1,2,\cdots ,N\\ &\begin{aligned} \text{margin}(\omega,b)&=\mathop{\text{min }}\limits_{\substack{\omega,b\\x_{i},i=1,2,\cdots ,N}}\text{distance}(\omega,b,x_{i})\\ &=\mathop{\text{min }}\limits_{\substack{\omega,b\\x_{i},i=1,2,\cdots ,N}} \frac{1}{||\omega||}(\omega^{T}x_{i}+b)\end{aligned} \end{aligned}\right. maxmargin(ω,b)s.t.yi(ωTxi+b)>0.i=1,2,,Nmargin(ω,b)=ω,bxi,i=1,2,,Nmin distance(ω,b,xi)=ω,bxi,i=1,2,,Nmin ∣∣ω∣∣1(ωTxi+b)
这里的margin是指数据集中离超平面最近的点到超平面的距离,因此,上式等价于
{ max  ω , b min  x i = 1 , 2 , ⋯   , N 1 ∣ ∣ ω ∣ ∣ y i ( ω T x i + b ) = max  ω , b 1 ∣ ∣ ω ∣ ∣ min  x i = 1 , 2 , ⋯   , N y i ( ω T x i + b ) s . t . y i ( ω T x i + b ) > 0 , i = 1 , 2 , ⋯   , N \left\{\begin{aligned}&\mathop{\text{max }}\limits_{\omega,b}\mathop{\text{min }}\limits_{x_{i}=1,2,\cdots,N} \frac{1}{||\omega||}y_{i}(\omega^{T}x_{i}+b)=\mathop{\text{max }}\limits_{\omega,b} \frac{1}{||\omega||}\mathop{\text{min }}\limits_{x_{i}=1,2,\cdots,N}y_{i}(\omega^{T}x_{i}+b)\\ &s.t.y_{i}(\omega^{T}x_{i}+b)>0,i=1,2,\cdots ,N\end{aligned}\right. ω,bmax xi=1,2,,Nmin ∣∣ω∣∣1yi(ωTxi+b)=ω,bmax ∣∣ω∣∣1xi=1,2,,Nmin yi(ωTxi+b)s.t.yi(ωTxi+b)>0,i=1,2,,N
这里我们研究 min  x i = 1 , 2 , ⋯   , N y i ( ω T + b ) \mathop{\text{min }}\limits_{x_{i}=1,2,\cdots,N}y_{i}(\omega^{T}+b) xi=1,2,,Nmin yi(ωT+b)
由于 ω T x + b = 0 \omega^{T}x+b=0 ωTx+b=0 a ω T x + a b = 0 , a ∈ R , a ≠ 0 a\omega^{T}x+ab=0,a \in \mathbb{R},a \ne 0 aωTx+ab=0,aR,a=0这两个超平面表示的是同一个超平面,因此我们假设
min  x i = 1 , 2 , ⋯   , N y i ( ω T x i + b ) = a , a ∈ R \mathop{\text{min }}\limits_{x_{i}=1,2,\cdots,N}y_{i}(\omega^{T}x_{i}+b)=a,a \in \mathbb{R} xi=1,2,,Nmin yi(ωTxi+b)=a,aR
ω T = ω ^ T a , b = b ^ a \begin{aligned} \omega^{T}=\frac{\hat{\omega}^{T}}{a},b= \frac{\hat{b}}{a}\end{aligned} ωT=aω^T,b=ab^,因此有
min  x i = 1 , 2 , ⋯   , N y i ( ω ^ T x i + b ^ ) = 1 \mathop{\text{min }}\limits_{x_{i}=1,2,\cdots,N}y_{i}(\hat{\omega}^{T}x_{i}+\hat{b})=1 xi=1,2,,Nmin yi(ω^Txi+b^)=1
因此我们就可以在数据集线性可分的任何情况下,令 min  x i = 1 , 2 , ⋯   , N y i ( ω ^ T x i + b ^ ) = 1 \mathop{\text{min }}\limits_{x_{i}=1,2,\cdots,N}y_{i}(\hat{\omega}^{T}x_{i}+\hat{b})=1 xi=1,2,,Nmin yi(ω^Txi+b^)=1,因此最大化数据到超平面的间隔就可以被表达为
{ max  ω , b 1 ∣ ∣ ω ∣ ∣ s . t . min ⁡ y i ( ω T x i + b ) = 1 , i = 1 , 2 , ⋯   , N s . t . y i ( ω T x i + b ) > 0 , i = 1 , 2 , ⋯   , N ⇒ { min  ω , b 1 2 ω T ω s . t . y i ( ω T x i + b ) ≥ 1 , i = 1 , 2 , ⋯   , N ⏟ N 个约束 \begin{aligned} &\left\{\begin{aligned}&\mathop{\text{max }}\limits_{\omega,b} \frac{1}{||\omega||}\\&s.t.\min y_{i}(\omega^{T}x_{i}+b)=1,i=1,2,\cdots,N\\&s.t.y_{i}(\omega^{T}x_{i}+b) >0,i=1,2,\cdots,N\end{aligned}\right.\\ \Rightarrow &\left\{\begin{aligned}&\mathop{\text{min }}\limits_{\omega,b} \frac{1}{2}\omega^{T}\omega\\&s.t.y_{i}(\omega^{T}x_{i}+b)\geq 1,\underbrace{i=1,2,\cdots,N}_{N个约束}\end{aligned}\right. \end{aligned} ω,bmax ∣∣ω∣∣1s.t.minyi(ωTxi+b)=1,i=1,2,,Ns.t.yi(ωTxi+b)>0,i=1,2,,N ω,bmin 21ωTωs.t.yi(ωTxi+b)1,N个约束 i=1,2,,N

CSDN话题挑战赛第2期
参赛话题:学习笔记

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值