陶哲轩实分析(上)8.3及习题-Analysis I 8.3

这一节主要说不可数集合的问题。

Exericse 8.3.1

If n = 0 n=0 n=0 then X = ∅ X=∅ X= and the only element in 2 X 2^X 2X is ∅ ∅ , so the cardinality of 2 X 2^X 2X is 2 0 = 1 2^0=1 20=1.
Now suppose the statement holds for n n n, let X X X be a finite set of cardinality n + 1 n+1 n+1, since n + 1 ≥ 1 , X ≠ ∅ n+1≥1,X≠∅ n+11,X=, so choose x ∈ X x∈X xX, then set X \ { x } X\backslash \{x\} X\{x} has cardinality n n n, and 2 X \ { x } 2^{X\backslash \{x\}} 2X\{x} has cardinality 2 n 2^n 2n. For any set S ∈ 2 X \ 2 X \ { x } S∈2^X \backslash 2^{X\backslash \{x\}} S2X\2X\{x}, S S S is a subset of X X X which contains x x x. Thus we can see that
∀ S ′ ∈ 2 X \ { x } ⇒ S ′ ∪ { x } ∈ 2 X \ 2 X \ { x } ∀S'∈2^{X\backslash \{x\}} ⇒S'∪\{x\}∈2^X\backslash 2^{X\backslash \{x\}} S2X\{x}S{x}2X\2X\{x}
And the converse is also true, thus the cardinality of 2 X \ { x } 2^{X\backslash \{x\}} 2X\{x} equals the cardinality of 2 X \ 2 X \ { x } 2^X\backslash 2^{X\backslash \{x\}} 2X\2X\{x}, then we have 2 X \ 2 X \ { x } 2^X\backslash 2^{X\backslash \{x\}} 2X\2X\{x} has cardinality n n n. Finally, from
2 X \ { x } ∪ 2 X \ 2 X \ { x } = 2 X 2^{X\backslash \{x\}}∪2^X\backslash 2^{X\backslash \{x\}}=2^X 2X\{x}2X\2X\{x}=2X
and
2 X \ { x } ∩ 2 X \ 2 X \ { x } = ∅ 2^{X\backslash \{x\}}\cap2^X\backslash 2^{X\backslash \{x\}}=∅ 2X\{x}2X\2X\{x}=
we have
# ( 2 X ) = # ( 2 X \ { x } ) + # ( 2 X \ 2 X \ { x } ) = 2 n + 2 n = 2 n + 1 \#(2^X)=\#(2^{X\backslash \{x\}} )+\#(2^X\backslash 2^{X\backslash \{x\}} )=2^n+2^n=2^{n+1} #(2X)=#(2X\{x})+#(2X\2X\{x})=2n+2n=2n+1

Exercise 8.3.2

We can see that D 0 ∩ A = ∅ , D i ⊆ A , ∀ i ≥ 1 D_0∩A=∅,D_i⊆A,∀i≥1 D0A=,DiA,i1, if we assume there’s d ∈ D n ∩ D m , m ≠ n d∈D_n∩D_m,m≠n dDnDm,m=n, we can safely assume m < n m<n m<n, then
∃ d m − 1 ∈ D m − 1 , d n − 1 ∈ D n − 1 , s . t . f ( d m − 1 ) = f ( d n − 1 ) = d ⇒ d m − 1 = d n − 1 ∃d_{m-1}∈D_{m-1},d_{n-1}∈D_{n-1},s.t. f(d_{m-1} )=f(d_{n-1} )=d ⇒d_{m-1}=d_{n-1} dm1Dm1,dn1Dn1,s.t.f(dm1)=f(dn1)=ddm1=dn1
So we can have
D n ∩ D m ≠ ∅ ⇒ D n − 1 ∩ D m − 1 ≠ ∅ D_n∩D_m≠∅ ⇒ D_{n-1}∩D_{m-1}≠∅ DnDm=Dn1Dm1=
Continue for m − 1 m-1 m1 times we would get D n − m ∩ D 0 ≠ ∅ D_{n-m}∩D_0≠∅ DnmD0=, which is a contradiction.
Now if g g g is defined as above, notice that ⋃ n = 1 ∞ D n ⊆ A ⋃_{n=1}^∞D_n ⊆A n=1DnA, and if x ∈ ⋃ n = 1 ∞ D n x∈⋃_{n=1}^∞D_n xn=1Dn , we shall have f − 1 ( x ) ∈ ⋃ n = 0 ∞ D n ⊆ B f^{-1} (x)∈⋃_{n=0}^∞D_n ⊆B f1(x)n=0DnB, if x ∉ ⋃ n = 1 ∞ D n x∉⋃_{n=1}^∞D_n x/n=1Dn we have g ( x ) = x g(x)=x g(x)=x. So g does map A A A to B B B.
To prove g g g is a bijection:
First suppose g ( a ) = g ( b ) g(a)=g(b) g(a)=g(b), if a , b ∉ ⋃ n = 1 ∞ D n a,b∉⋃_{n=1}^∞D_n a,b/n=1Dn we directly get g ( a ) = a = b = g ( b ) g(a)=a=b=g(b) g(a)=a=b=g(b). If a , b ∈ ⋃ n = 1 ∞ D n a,b∈⋃_{n=1}^∞D_n a,bn=1Dn we have f − 1 ( a ) = f − 1 ( b ) f^{-1} (a)=f^{-1} (b) f1(a)=f1(b), thus
f ( f − 1 ( a ) ) = f ( f − 1 ( b ) ) ⇒ a = b f(f^{-1} (a))=f(f^{-1} (b)) ⇒a=b f(f1(a))=f(f1(b))a=b
The case that a ∈ ⋃ n = 1 ∞ D n a∈⋃_{n=1}^∞D_n an=1Dn and b ∉ ⋃ n = 1 ∞ D n b∉⋃_{n=1}^∞D_n b/n=1Dn is impossible, assume so, then g ( a ) = f − 1 ( a ) ∈ ⋃ n = 0 ∞ D n = ( B \ A ) ∪ ( ⋃ n = 1 ∞ D n ) g(a)=f^{-1} (a)∈⋃_{n=0}^∞D_n =(B\backslash A)∪(⋃_{n=1}^∞D_n ) g(a)=f1(a)n=0Dn=(B\A)(n=1Dn), and g ( b ) = b g(b)=b g(b)=b, so we have b ∈ ( B \ A ) ∪ ( ⋃ n = 1 ∞ D n ) b∈(B\backslash A)∪(⋃_{n=1}^∞D_n ) b(B\A)(n=1Dn), since b ∈ A b∈A bA, we can’t have b ∈ B \ A b∈B\backslash A bB\A, then b ∈ ⋃ n = 1 ∞ D n b∈⋃_{n=1}^∞D_n bn=1Dn , which is a contradiction. The case that a ∉ ⋃ n = 1 ∞ D n a∉⋃_{n=1}^∞D_n a/n=1Dn and b ∈ ⋃ n = 1 ∞ D n b∈⋃_{n=1}^∞D_n bn=1Dn is impossible by the same logic. So we finished proving g is an injection.
Next, let any b ∈ B b∈B bB, we must have one and only one of the two cases valid: b ∈ ⋃ n = 0 ∞ D n , b ∉ ⋃ n = 0 ∞ D n b∈⋃_{n=0}^∞D_n ,\quad b∉⋃_{n=0}^∞D_n bn=0Dn,b/n=0Dn
If b ∈ ⋃ n = 0 ∞ D n b∈⋃_{n=0}^∞D_n bn=0Dn , then let x = f ( b ) ∈ ⋃ n = 1 ∞ D n x=f(b)∈⋃_{n=1}^∞D_n x=f(b)n=1Dn , we have g ( x ) = f − 1 ( x ) = b g(x)=f^{-1} (x)=b g(x)=f1(x)=b.
If b ∉ ⋃ n = 0 ∞ D n b∉⋃_{n=0}^∞D_n b/n=0Dn , we must have b ∈ A b∈A bA since B \ ( ⋃ n = 0 ∞ D n ) = A \ ( ⋃ n = 1 ∞ D n ) ⊆ A B\backslash (⋃_{n=0}^∞D_n )=A\backslash (⋃_{n=1}^∞D_n )⊆A B\(n=0Dn)=A\(n=1Dn)A, we let x = b x=b x=b, then g ( x ) = x = b g(x)=x=b g(x)=x=b. We finished proving g g g is a surjection.

Exercise 8.3.3

Let f : A → B f:A→B f:AB and g : B → A g:B→A g:BA be injections, we can have f ( A ) ⊆ B f(A)⊆B f(A)B and g ( B ) ⊆ A g(B)⊆A g(B)A, thus B ⊆ g − 1 ( A ) B⊆g^{-1} (A) Bg1(A). We can see that f ∘ g f∘g fg is an bijection from g − 1 ( A ) g^{-1} (A) g1(A) to f ( A ) f(A) f(A). Let
D 0 = B \ f ( A ) , D n + 1 = f ( g ( D n ) ) D_0=B\backslash f(A),\quad D_{n+1}=f(g(D_n )) D0=B\f(A),Dn+1=f(g(Dn))
Then the sets D 0 , D 1 , D 2 , … D_0,D_1,D_2,… D0,D1,D2, are disjoint from each other. Let h : f ( A ) → B h:f(A)→B h:f(A)B be defined by setting h ( x ) ≔ g − 1 ( f − 1 ( x ) ) h(x)≔g^{-1} (f^{-1} (x)) h(x):=g1(f1(x)) if x ∈ ⋃ n = 1 ∞ D n x∈⋃_{n=1}^∞D_n xn=1Dn , and h ( x ) ≔ x h(x)≔x h(x):=x if x ∉ ⋃ n = 1 ∞ D n x∉⋃_{n=1}^∞D_n x/n=1Dn , then due to Exercise 8.3.2, h h h is a bijection, so c a r d ( B ) = c a r d ( f ( A ) ) = c a r d ( A ) card(B)=card(f(A))=card(A) card(B)=card(f(A))=card(A).

Exercise 8.3.4

We can find an injection f : X → 2 X f:X→2^X f:X2X by f ( x ) = { x } f(x)=\{x\} f(x)={x}, thus X X X has lesser than or equal cardinality to 2 X 2^X 2X, and due to Theorem 8.3.1, X X X doesn’t have equal cardinality to 2 X 2^X 2X.
To prove the second statement, we can find injections f : A → B f:A→B f:AB and g : B → C g:B→C g:BC, thus f ∘ g ∶ A → C f∘g∶A→C fgAC is an injection, thus c a r d ( A ) ≤ c a r d ( C ) card(A)≤card(C) card(A)card(C), now suppose A A A has equal cardinality to C C C, then c a r d ( C ) = c a r d ( A ) ≤ c a r d ( B ) card(C)=card(A)≤card(B) card(C)=card(A)card(B), combined with c a r d ( B ) ≤ c a r d ( C ) card(B)≤card(C) card(B)card(C) we get c a r d ( C ) = c a r d ( B ) card(C)=card(B) card(C)=card(B) from Exercise 8.3.3, this is a contradiction since B B B has strictly lesser cardinality than C C C.

Exercise 8.3.5

If X X X is finite, then from Exercise 8.3.1 we know that 2 X 2^X 2X is finite.
If X X X is countable, then c a r d ( X ) = c a r d ( N ) card(X)=card(\mathbf N) card(X)=card(N), from Cantor’s Theorem we know that c a r d ( 2 X ) > c a r d ( X ) = c a r d ( N ) card(2^X )>card(X)=card(\mathbf N) card(2X)>card(X)=card(N), so 2 X 2^X 2X is uncountable.
If X X X is uncountable, then c a r d ( 2 X ) > c a r d ( X ) > c a r d ( N ) card(2^X )>card(X)>card(N) card(2X)>card(X)>card(N), so 2 X 2^X 2X is uncountable.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值