陶哲轩实分析 5.2 节习题试解

陶哲轩实分析 5.2 节习题试解

5.2.1

(an)n=0 是个 Cauchy 序列, (bn)n=0 是与 (an)n=0 等价的序列,证明 (bn)n=0 也是 Cauchy 序列。

证明:

因为 (an)n=0 是个 Cauchy 序列。所以对于任意的 ε>0 ,都存在一个 N0 , 当 i,jN 时,满足 |aiaj|<ε/3

因为 (bn)n=0 是与 (an)n=0 等价的序列。所以对于任意的 ε>0 ,都存在一个 N0 ,当 nN 时满足 |anbn|<ε/3

对于任意的 ε>0 ,设 M=max(N,N) 。则,当 i,jN 时,有:

|bibj|=|biai+ajbj+aiaj||biai|+|ajbj|+|aiaj|ε/3+ε/3+ε/3ε

所以 (bn)n=0 也是 Cauchy 序列。

5.2.2

(an)n=0 是个有界序列, (bn)n=0 是与 (an)n=0 终极 ε - 接近的,证明 (bn)n=0 也是有界序列。

证明:
(an)n=0 是个有界序列。那么存在一个 M0 ,对任意的 i0 ,满足 |ai|<M
因为 (bn)n=0 是与 (an)n=0 终极 ε - 接近的。
所以存在一个 N0 ,当 nN 时,有 |anbn|<ε
所以当 nN 时,有 |bn||an|+εM+ε

(bn)N1n=0 是个有限长度序列,必然是有界的,也就是说存在一个 M ,满足:
n<N 时, |bn|M

M′′=max(M,M) 。则对任意的 bn 都有 |bn|M′′
所以 (bn)n=0 是个有界序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值