陶哲轩实分析 5.2 节习题试解
5.2.1
设 (an)∞n=0 是个 Cauchy 序列, (bn)∞n=0 是与 (an)∞n=0 等价的序列,证明 (bn)∞n=0 也是 Cauchy 序列。
证明:
因为 (an)∞n=0 是个 Cauchy 序列。所以对于任意的 ε>0 ,都存在一个 N≥0 , 当 i,j≥N 时,满足 |ai−aj|<ε/3 。
因为 (bn)∞n=0 是与 (an)∞n=0 等价的序列。所以对于任意的 ε>0 ,都存在一个 N′≥0 ,当 n≥N′ 时满足 |an−bn|<ε/3 。
对于任意的
ε>0
,设
M=max(N,N′)
。则,当
i,j≥N′
时,有:
所以 (bn)∞n=0 也是 Cauchy 序列。
5.2.2
设 (an)∞n=0 是个有界序列, (bn)∞n=0 是与 (an)∞n=0 终极 ε - 接近的,证明 (bn)∞n=0 也是有界序列。
证明:
(an)∞n=0
是个有界序列。那么存在一个
M≥0
,对任意的
i≥0
,满足
|ai|<M
。
因为
(bn)∞n=0
是与
(an)∞n=0
终极
ε
- 接近的。
所以存在一个
N≥0
,当
n≥N
时,有
|an−bn|<ε
。
所以当
n≥N
时,有
|bn|≤|an|+ε≤M+ε
(bn)N−1n=0
是个有限长度序列,必然是有界的,也就是说存在一个
M′
,满足:
当
n<N
时,
|bn|≤M′
。
取
M′′=max(M,M′)
。则对任意的
bn
都有
|bn|≤M′′
。
所以
(bn)∞n=0
是个有界序列。