陶哲轩实分析(上)9.9及习题-Analysis I 9.9

本篇讨论一致连续性,一种比逐点连续更强的数学概念。通过一系列习题(9.9.1-9.9.6),阐述一致连续性在极限、Cauchy序列和函数连续性上的应用,以及其与不连续性的关系。

这一节讲一致连续,是全局性质或者区间性质而非点的性质。一致连续初看不太好理解,但在后续章节中就会发现一致连续是比逐点连续更强的性质。

Exercise 9.9.1

If (an)n=1∞(a_n )_{n=1}^∞(an)n=1 and (bn)n=1∞(b_n )_{n=1}^∞(bn)n=1 are equivalent, then ∀ϵ>0,∃N>1∀ϵ>0,∃N>1ϵ>0,N>1, s.t. (an)n=N∞(a_n )_{n=N}^∞(an)n=N and (bn)n=N∞(b_n )_{n=N}^∞(bn)n=N are ϵϵϵ-close. Thus
∣an−bn∣<ϵ,∀n>N|a_n-b_n |<ϵ,\quad ∀n>Nanbn<ϵ,n>N
This means lim⁡n→∞(an−bn)=0\lim_{n→∞}(a_n-b_n)=0limn(anbn)=0, and all steps above can be reversed.

Exercise 9.9.2

( a ) implies ( b ):
∀ϵ>0,∃δ>0∀ϵ>0,∃δ>0ϵ>0,δ>0, s.t. ∣f(x)−f(y)∣<ϵ|f(x)-f(y)|<ϵf(x)f(y)<ϵ whenever ∣x−y∣<δ|x-y|<δxy<δ. As (xn)n=1∞(x_n )_{n=1}^∞(xn)n=1 and (yn)n=1∞(y_n )_{n=1}^∞(yn)n=1 are equivalent, we can find NNN such that ∣xn−yn∣<δ,∀n>N|x_n-y_n |<δ,∀n>Nxnyn<δ,n>N, so we shall get
∣f(xn)−f(yn)∣<ϵ,∀n>N|f(x_n )-f(y_n)|<ϵ,\quad ∀n>Nf(xn)f(yn)<ϵ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值