这一节讲一致连续,是全局性质或者区间性质而非点的性质。一致连续初看不太好理解,但在后续章节中就会发现一致连续是比逐点连续更强的性质。
Exercise 9.9.1
If (an)n=1∞(a_n )_{n=1}^∞(an)n=1∞ and (bn)n=1∞(b_n )_{n=1}^∞(bn)n=1∞ are equivalent, then ∀ϵ>0,∃N>1∀ϵ>0,∃N>1∀ϵ>0,∃N>1, s.t. (an)n=N∞(a_n )_{n=N}^∞(an)n=N∞ and (bn)n=N∞(b_n )_{n=N}^∞(bn)n=N∞ are ϵϵϵ-close. Thus
∣an−bn∣<ϵ,∀n>N|a_n-b_n |<ϵ,\quad ∀n>N∣an−bn∣<ϵ,∀n>N
This means limn→∞(an−bn)=0\lim_{n→∞}(a_n-b_n)=0limn→∞(an−bn)=0, and all steps above can be reversed.
Exercise 9.9.2
( a ) implies ( b ):
∀ϵ>0,∃δ>0∀ϵ>0,∃δ>0∀ϵ>0,∃δ>0, s.t. ∣f(x)−f(y)∣<ϵ|f(x)-f(y)|<ϵ∣f(x)−f(y)∣<ϵ whenever ∣x−y∣<δ|x-y|<δ∣x−y∣<δ. As (xn)n=1∞(x_n )_{n=1}^∞(xn)n=1∞ and (yn)n=1∞(y_n )_{n=1}^∞(yn)n=1∞ are equivalent, we can find NNN such that ∣xn−yn∣<δ,∀n>N|x_n-y_n |<δ,∀n>N∣xn−yn∣<δ,∀n>N, so we shall get
∣f(xn)−f(yn)∣<ϵ,∀n>N|f(x_n )-f(y_n)|<ϵ,\quad ∀n>N∣f(xn)−f(yn)∣<ϵ,

本篇讨论一致连续性,一种比逐点连续更强的数学概念。通过一系列习题(9.9.1-9.9.6),阐述一致连续性在极限、Cauchy序列和函数连续性上的应用,以及其与不连续性的关系。
最低0.47元/天 解锁文章
1006

被折叠的 条评论
为什么被折叠?



