高速系统设计自学笔记——理论基础3

微波传输线等效电路

        长线理论是微波等效电路理论中涉及单模均匀传输线传输特性的理论。在这里必须注意,我们的研究对象是微波,由于微博的波长很短,因此在很短的一段传输线上,微波的相位就会有明显的差异。频率为50Hz的低频交流电,在传输线上的相位变化是6\times 10^{-5}度/米(波长6000km);而频率为10GHz的微波,在传输线上的相位变化是1.2\times 10^{4}度/米(波长3cm)。

        因此,在研究低频电路时,一般不考虑相位问题,在讨论微波电路时就必须加以考虑。如图所示使我们用电路方法分析微波传输线的等效电路及参考方向的过程。

微波传输线等效电路

        传输线方程及其解

        根据等效电路,在长度为dx的一段均匀传输线上的串联阻抗和并联导纳可以表示为:

Z=R+j\omega L                                                                                          (1.1)

Y=G+j\omega C                                                                                          (1.2)

        R为单位长度导体的串联电阻;L为单位长度导体的串联电感;

        G为单位长度导体的并联电导;C为单位长度导体的并联电容;

        根据基尔霍夫定律,可以得到电压波和电流波的微分方程组:

\Delta v(x,t)=v(x+\Delta x,t)-v(x,t)=(-R\cdot \Delta x)\cdot i(x,t)+(-L\cdot \Delta x)\frac{di(x,t)}{dt}                                      (1.3)

\Delta i(x,t)=i(x+\Delta x,t)-i(x,t)=(-G\cdot \Delta x)\cdot v(x+\Delta x,t)+(-C\cdot \Delta x)\frac{dv(x+\Delta x,t)}{dt}                                              (1.4)

        整理上述两式,除以\Delta x,并利用\Delta x\rightarrow 0,得到如下两个方程:

\frac{dv(x,t)}{dx}=-R\cdot i(x,t)-L\cdot \frac{di(x,t)}{dt}                                                                         (1.5)

\frac{di(x,t)}{dx}=-G\cdot v(x,t)-C\cdot \frac{dv(x,t)}{dt}                                                                        (1.6)

        对式(1.5)进行dx求导,对式(1.6)进行dt求导,得到如下两式:

\frac{d^{2}v(x,t)}{dx^{2}}=-R\cdot \frac{i(x,t)}{dx}-L\cdot \frac{d^{2}v(x,t)}{dtdx}                                                                     (1.7)

\frac{d^{2}i(x,t)}{dxdt}=-G\cdot \frac{dv(x,t)}{dt}-C\cdot \frac{d^{2}v(x,t)}{d^{2}t}                                                                  (1.8)

        将式(1.6)和(1.8)带入到式(1.7)中,得到如下波动方程式:

\frac{d^{2}v(x,t)}{dx^{2}}-\gamma ^{2}\cdot v(x,t)=0                                                                                  (1.9)

        这里\gamma =\sqrt{(R+j\omega L)(G+j\omega C)}=\alpha +j\beta                                                                (1.10)

        其中,\alpha是单位长度上的衰减常数(奈培);\beta是单位长度上的相位常数(弧度)。

        在不考虑时间量的情况下,式(1.9)的通解为:

V(x)=V_{+}\cdot e^{-\gamma x}+V_{-}\cdot e^{\gamma x}                                                                              (1.11)

        式(1.11)也给出了在传输线上传输的一般表达方式。前向传输的电压表示为V_{+}\cdot e^{-\gamma x},反射(后向)传输电压为V_{-}\cdot e^{-\gamma x}。V(x)是x点处,前向传输电压和反射电压的叠加。

        按照同样的求解过程,我们可以得到关于电路的方程式:

I(x)=I_{+}\cdot e^{-\gamma x}-I_{-}\cdot e^{\gamma x}                                                                               (1.12)

        从而得到:

I_{+}=V_{+}\frac{\gamma }{R+j\omega L}I_{-}=V_{-}\frac{\gamma }{R+j\omega L}                                                                       (1.13)

        在取得传输线上的电压和电流表达式后,就很容易得到了传输阻抗的表达式:

Z_{0}=\frac{V_{+}}{I_{+}}=\frac{V_{-}}{I_{-}}=\frac{R+j\omega L}{\gamma }=(\frac{R+j\omega L}{G+j\omega C})^{\frac{1}{2}}                                                                 (1.14)

        对于无损传输线,即R=G=0,则阻抗和传播系数的表达式为:

Z_{0}=(\frac{L}{C})^{\frac{1}{2}}\gamma =j\beta =j\omega \sqrt{LC}                                                                       (1.15)

        由阻抗表达式(1.14)和(1.15)可以看出,对于理想传输线,其阻抗和信号频率无关,而对于有损传输线阻抗和频率相关。但是由于我们所研究的信号频率比较高,并且传输线上的电阻和电导效应比较微弱,一般情况下:

R<<j\omega LG<<j\omega C

        在这种情况下,表达式(1.14)可以近似等于(1.15),因此对于损耗不大的有损传输线也近似等效成无损传输线。

        通过以上的分析,我们得到了有损(无损)传输线的阻抗表达式(1.14)。该表达式是我们分析高频电路的最基本出发点,在接下来的高速电路分析和设计中,很多物理现象的分析及问题的解决都和传输线的阻抗表达式密切相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lky_DOUBLE E

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值