如何在CPU 上运行 LLama - 3.1 8B Instruct 量化模型

本文将详细介绍如何在 CPU 上运行 LLama - 3.1 8B Instruct 量化模型,包括模型的基本信息、运行前的准备工作、具体的运行步骤以及模型配置参数的深入理解,旨在为人工智能爱好者、研究人员和开发者提供全面且实用的指导。

一、LLama - 3.1 8B Instruct 模型概述

(一)模型背景
LLama 是由 Meta 开发的开源大型语言模型系列,而 LLama - 3.1 8B Instruct 是其先进的 LLama 3 家族中的一员。它专为优化文本生成和基于对话的应用而设计,拥有 80 亿个参数,提供了预训练和指令微调两个版本。

(二)模型特点

  1. 参数规模与优化
    • 80 亿参数的配置使其在效率和性能之间达到了较好的平衡。这个参数数量既能保证模型具备一定的语言理解和生成能力,又能在资源有限的情况下(如 CPU 运行时)相对高效地工作。
  2. 长上下文支持
    • 支持长达 128k 个词元(tokens)的上下文长度。这意味着模型能够处理和生成更长的文本序列,包括输入和输出的组合。例如,在处理长篇文章的摘要任务或者多轮对话场景中,长上下文支持能够让模型更好地理解前文信息,从而生成更连贯、准确的回复。
  3. 架构特性
    • 基于变压器(Transformer)的自回归架构构建,并通过人类反馈强化学习(RLHF)进行微调,使其与人类偏好更好地对齐。在实际应用中,这种架构使得模型能够根据输入文本逐步生成输出,并且在生成过程中考虑到人类的期望和偏好,生成更符合用户需求的文本。
    • 采用分组查询注意力(GQA)机制,提高了推理过程中的可扩展性和效率。在处理大规模文本数据时,GQA 能够减少计算资源的消耗,加快模型的推理速度,从而在 CPU 上也能相对快速地生成文本。
  4. 训练数据
    • 模型在超过 15 万亿个词元的公开数据上进行训练,主要聚焦于英语文本。丰富的训练数据为模型提供了广泛的语言知识和语义理解能力,使其能够处理各种类型的自然语言任务,如问答、文本总结、指令遵循等。
  5. 输出能力
    • 不仅能够生成自然语言文本,还能生成代码。这使得它在编程辅助、代码解释等方面具有潜在的应用价值,为开发者提供了一种强大的工具。
  6. 模型变体
    • 提供预训练和指令微调两种模型变体,以满足不同的使用场景。预训练模型可以用于进一步的自定义训练或特定领域的适应,而指令微调模型则直接针对指令遵循任务进行优化,能够更快地应用于实际的
### Python本地部署Llama3-8B模型并通过API-key调用 #### 准备工作 为了能够在本地环境中成功部署并运行Llama3-8B模型,需确保环境已安装必要的依赖项以及配置好相应的开发工具。 #### 转换与量化模型 对于大型预训练模型而言,在实际应用前通常会经历转换和量化的流程以优化性能。具体操作如下所示: ```bash python convert-hf-to-gguf.py models/Qwen-1_8B-Chat/ ./quantize models/Qwen-1_8B-Chat/ggml-model-f16.gguf models/Qwen-1_8B-Chat/ggml-model-q5_k_m.gguf q5_k_m [^2] ``` 此命令将原始Hugging Face格式的Qwen-1_8B-Chat模型文件转化为更适合推理使用的GGUF格式,并对其进行量化处理,从而减少存储空间占用的同时提高计算效率。 #### 启动vLLM服务端口 启动基于vLLM框架的服务端程序可以使得其他应用程序能够通过网络访问到已经加载好的语言模型实例。执行下面这段脚本即可开启一个监听于`0.0.0.0:9000`地址上的HTTP RESTful API服务器: ```bash conda activate vllm2 python -m vllm.entrypoints.openai.api_server \ --model /data/model/meta-llama-3.1-8b-instruct \ --swap-space 16 \ --disable-log-requests \ --max-num-seqs 256 \ --host 0.0.0.0 \ --port 9000 \ --dtype float16 \ --tensor-parallel-size 2 \ --pipeline-parallel-size 1 \ --max-model-len 10240 \ --enforce-eager \ --distributed-executor-backend mp \ --rope-scaling '{"type": "dynamic", "factor": 8.0}' [^3] ``` 上述参数设置旨在平衡资源消耗与响应速度之间的关系,同时也考虑到了多GPU环境下分布式运算的需求。 #### 编写客户端代码发起请求 最后一步就是利用Python编写一段简单的测试代码向刚刚建立起来的服务发送查询请求了。这里给出了一种可能实现方式的例子: ```python import os from openai import OpenAI client = OpenAI(api_key="your_api_key_here") response = client.chat.completions.create( model="/data/model/meta-llama-3.1-8b-instruct", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me about the weather today"}, {"role": "assistant", "content": ""} ] ) print(response.choices[0].message.content.strip()) ``` 请注意替换掉示例中的`your_api_key_here`部分为真实的API密钥字符串[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值