当下大语言模型(LLM)如 ChatGPT 等已广泛应用于各个领域,从日常聊天到专业的医疗、法律和科研辅助等。然而,LLM 的幻觉现象却如影随形,给其应用带来了诸多挑战和潜在风险。深入理解 LLM 幻觉的类型、成因、影响以及应对策略,对于推动 AI 技术的健康发展至关重要。今天我们一起了解一下LLM幻觉。
一、LLM幻觉的多样奇观
LLM幻觉(基于验证链(Chain of Verification)的大语言模型幻觉问题解决方案),简而言之,是指大型语言模型在生成文本时,产生的与事实不符、逻辑错乱或违背指令的输出。这些幻觉如同万花筒般绚烂多彩,却又让人捉摸不透其本质。根据幻觉的不同表现,我们可以将其大致分为以下几类:
(一)外在幻觉(Extrinsic Hallucinations)
外在幻觉是指 LLM 凭空捏造信息,这些信息在输入数据中不存在且毫无事实依据。例如,一个聊天机器人自信地编造出 “1824 年的大香蕉条约” 这样的历史事件;或者一个总结工具声称阿尔伯特・爱因斯坦将发明披萨作为副业;再如健康应用编造出 “试试大蒜袜子助眠” 这种毫无科学根据的医疗建议。这种幻觉的产生主要源于对训练数据的过度拟合,模型过度学习了训练数据中的模式,以至于能够流利地说出看似合理但实则虚假的句子。同时,知识空白也会导致其在不确定时进行猜测,而基于概率的统计生成方式有时也会产生完全荒谬的内容。外在幻觉在现实中可能造成严重后果,如在医疗领域给出基于不存在研究的治疗建议,或在法律系统中生成假的案例引用。