DeepLabv3+训练细节总结

本文详细总结了DeepLabv3+的训练协议,包括使用ResNet-101或修改后的Xception,基于ImageNet-1K预训练,在PASCAL VOC 2012数据集上进行训练。采用了'poly'学习率策略,初始学习率为0.007,并使用了513×513的输入尺寸。在验证集上,模型以8的 atrous rate 进行推理,以获取更详细的特征图。训练过程中还涉及了数据增强,如图像缩放和随机左右翻转。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Training Protocol

  • backbone: ResNet-101 or modified aligned Xception
  • pretrain: ImageNet-1K
  • dataset: PASCAL VOC 2012 (20 foreground object classes, 1 background class)
    10582 (trainaug) training images, 1449 (val), 1456 (test)
  • lr schedule: “poly” policy (initial lr: 0.007)
    initial learning rate is multiplied by ( 1 − i t e r m a x _ i t e r )
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值