1 引言
随着现代科技的发展,GPS技术正以其全天候、全球性、自动化、高效益、高精度等优势广泛应用于经济建设和科学研究的诸多领域,尤其在测绘行业,GPS技术正逐步改变着我们传统的作业方法和手段。GPS静态测量已经能为我们提供毫米级点位精度的平面控制测量,采用载波相位差分技术的GPS实时动态测量,简称RTK(Real Time Kinematics)定位技术,是一种实时处理两个测站载波相位观测量的差分方法,基准站的GPS接收机实时地把观测数据、载波相位改正数及已知数据通过UHF数据链传输给移动站的GPS接收机,移动站快速求解整周模糊度,在具备四颗或以上卫星时,可实时解算出厘米级的移动站的动态位置。
RTK定位技术以实时、快速、高精度(实时基线精度可达到厘米级)为特点,为大比例尺测图、厘米级精度的实时定位、高程测量等提供了新的手段。正是基于这种高精度的实时三维定位技术,我们才有可能改变传统的作业方式,来进行无验潮水深测量。
2 无验潮水深测量原理
无验潮水深测量是集RTK-DGPS定位技术、带有数字化系统的测深仪测深和计算机处理系统于一体的水下地形测量技术,该项技术运用了GPS高精度实时载波相位差分定位,使得无需验潮即可进行水下地形的测量工作。
图1 无验潮水深测量基本原理图
如图一所示,采用RTK定位技术可精确测定GPS天线的三维位置(x,y,H),其中x、y用于平面定位,H为椭球高。测深仪可实时测定换能器底面至海底的深度D,所以有如下公式:
DP = D + df – T (1)
T = H – h – ζ – K (2)
上述两式中:
DP-------图载水深;
D--------实测水深;
df-------换能器静吃水;
T--------水位;
H--------椭球高;
h--------GPS天线至水面距离;
ζ--------高程异常;
K--------当地深度基准面与似大地水准面间的距离,在小范围内为常数。
显然,通过上述公式,水位T可由RTK-DGPS所测得的椭球高H经过各项改正获得,无需进行验潮。
3 坐标系统转换、高程拟合
我们知道,GPS定位是以WGS-84坐标系统为基准的,所给出的三维坐标为WGS-84坐标系下的平面位置和椭球高,我们通常应用的平面坐标系统为1954年北京坐标系或1980年西安坐标系,有的工程采用独立坐标系,高程系统为1956年黄海高程基准或1985年国家高程基准,沿海地区大多采用当地深度(高程)基准,一般与国家高程基准相差一固定常数。因此,我们要利用GPS定位成果,就必须进行坐标系统转换。
3.1 平面坐标系统转换
平面坐标系统转换一般可采用四参数法、七参数法,对于定位精度要求不高的,也可以采用强制符合法。平面坐标系统转换的方法较多,这里不再赘述。
3.2 高程系统转换
3.2.1 GPS高程测量的概念
(1)、三种高程系统:
a、大地高系统
大地高系统是以参考椭球面为基准的高程系统。
大地高是指地面上某点沿通过该点的椭球面法线到椭球面的距离H。
GPS测量是在WGS-84地心坐标系中进行的,它直接可测得的高程是地面上某点在WGS-84椭球上的大地高H84。
b、正高系统
正高系统是以大地水准面为基准的高程系统。
正高是指地面上某点沿经过该点的铅垂线到大地水准面的距离Hg。
c、正常高系统
正常高系统是以似大地水准面为基准的高程系统。
正常高是指地面上某点沿经过该点的铅垂线到似大地水准面的距离h。
1956年黄海高程基准、1985年国家高程基准均为正常高系统。
(2)、三种高程之间的关系(见图二)
我们知道,参考椭球面是由椭球体的定位和定向参数决定的,是可以用数学公式表达和确定的。不同的椭球体,参考椭球面不同。
大地水准面是一组重力等位面,由于地球内部质量分布不均匀等原因,所以正高不能精确测定。大地水准面与参考椭球面之间存在差异,我们称之为“大地水准面起伏”,以Ng表示,则某点的正高与大地高之间的关系为:
H = Hg + Ng (3)
似大地水准面与参考椭球面之间的高程差称为高程异常(本文中的“高程异常”指小范围内的大地水准面差距与高程异常之和),记为ξ,某点的正常高与大地高的关系为:
h = H - ξ (4)
图二 几种高程面之间关系图
3.2.2 GPS高程测量原理
GPS定位系统采用的坐标系统是WGS-84坐标系,所测得的高程是大地高(基于椭球面),而我们常采用的坐标系统是1954年北京坐标系,有的工程可能采用地方独立坐标系,我们平常所用的高程是正常高(基于似大地水准面)。要想利用GPS测量获得测区内每一点准确的正常高,前提是必须测得该点准确的空间三维坐标(Xi,Yi,Zi),然后从Zi中分离出该点的大地高Hi,公式如下:

L=arctg(Y/X)
B=arctg[(Z+e2Nsin2B)/√(X2+Y2)] (5)
H=Z/sinB – N(1-e2)
上式中:
X、Y、Z为空间直角坐标,B、L、H为大地坐标;
N为东西(卯酉)圈曲率半径;
e为第一偏心率。
同时,通过与已知高程的地面点联测,求取区域转换参数(七参数),或者经过区域高程拟合,获得该点准确的高程异常值ξi,从而得到该点准确的正常高hi。
(1)、利用七参数法求取待求点的正常高
首先,在测区附近布设GPS控制网,联测一定数量的具有水准高程的控制点,布网时,尽量把整个测区包在控制网中,在准备架设基准站的地方(为维护方便,基准站一般选择在驻地附近)一定要布设一点。如果已知点或待定点没有水准高程,我们可以采用水准测量的方法把准备用于求转换参数的点引测水准高程。
为了获得比较精确WGS-84坐标,在进行静态控制测量时,准备架设基准站的点要观测尽量长的时间。进行基线解算时,一般以该点为参考点,来推算其他基线。经过自由网平差,我们就得到了所有控制点的WGS-84坐标。至此,我们得到了用于求取转换参数WGS-84成果。
我们在测区周围和中部至少选取4~5个同时具有两套坐标(WGS-84坐标和地方坐标)的控制点,利用最小二乘法计算出七参数,公式如下:

= (1+k)

+

+
(6)
上式中:
------- WGS-84坐标系中的空间直角坐标;
------- 地方坐标系中的空间直角坐标;
ΔX、ΔY、ΔZ ---- 平移转换参数;
εX、εY、εZ ----- 旋转参数;
k ------- 尺度变化因子。
至此,我们就可以在基准站架设GPS岸台,移动站接受岸台传送过来的载波相位改正数,解算出整周模糊度,移动台就可以输出厘米级精度的定位数据。配合相应的计算机软件,经过七参数转换,我们就可以实时得到GPS天线在地方坐标系中的三维坐标。
(2)、高程拟合法
除采用七参数法可以得到待求点的精确的正常高外,我们还可以采用高程拟合的方法来求取,采用此方法时,高程和平面位置是分开进行解算的。
同七参数法一样,要进行高程拟合,首先要在测区建立GPS控制网,得到用于拟合的点在两套坐标系(WGS-84坐标和地方坐标)下的三维坐标,然后采用解析的方法进行高程拟合,求出一套用于转换的参数。这样,我们就可以求得其他待求点的正常高。
解析法就是采用一种数学模型表达的面来拟合测区的似大地水准面。假设测区内任意一点的平面坐标为(x,y),该点处的高程异常值ξ与该点的位置关系可表示为:
ξi=Hi-hi
=f(xi,yi) (7)
f(x,y)是测区内似大地水准面的拟合函数,根据测区内高程异常的变化情况,可以采用平面拟合、二次曲面拟合及三次曲面拟合,数学模型为:
平面拟合:f(x,y)= a0 + a1x + a2y
二次曲面拟合:f(x,y)= a0 + a1x + a2y + a3xy + a4x2 + a5y2
三次曲面拟合:f(x,y)= a0 + a1x +a2y + a3xy + a4x2 + a5y2
+ a7xy2 + a6x2y + a8x3 + a9y3
对于高程异常变化不大的地区(如:平原地区),一般采用平面拟合或二次曲面拟合(去掉x2,y2项),取6~8个重合点即可。对于高程异常变化较大的区域,应采用曲面拟合,在高程异常变化较大的转折处应有重合点,同时要增加重合点的数量。进行拟合时,要留一定数量的校核点。
下面以二次曲面拟合为例,给出计算拟合系数的误差方程。在重合点上,误差方程式为:
ξ1 = a0 + a1x1 + a2y1 + a3x1y1 + a4x12 + a5y12
ξ2 = a0 + a1x2 + a2y2 + a3x2y2 + a4x22 + a5y22
ξ3 = a0 + a1x3 + a2y3 + a3x3y3 + a4x32 + a5y32
ξ4 = a0 + a1x4 + a2y4 + a3x4y4 + a4x42 + a5y42
ξ5 = a0 + a1x5 + a2y5 + a3x5y5 + a4x52 + a5y52
………
ξn = a0 + a1xn + a2yn + a3xnyn + a4xn2 + a5yn2
联立方程,求出系数a0、a1、a2、a3、a4、a5 。
写成一般形式为:
ξ = Ax + ε
x = (ATA)-1·(ATξ) (8)
上式中:
ξ =[ξ1 ξ2 ξ3 … ξn]T;
x=[a0 a1 a2 a3 a4 a5]T;
1 x1 y1 x1y1 x12 y12
1 x2 y2 x2y2 x22 y22
A= 1 x3 y3 x3y3 x32 y32
……..
1 xn yn xnyn xn2 yn2
ε为模型误差,且假设独立。
我们知道,GPS测高的绝对精度并不可靠(测得的每一点的大地高Hi的精度),但相对精度比较高(两点之间的大地高的高差ΔHij的精度),而根据公式(4)可知,我们所计算的正常高的精度主要决定于大地高Hi的测量精度和高程异常ξi的精度,因此,在实际应用时,我们将公式(4)应用于任意两点i、j,并取其差值,可得:
Δhij = ΔHij –Δξij (9)
上式中,Δhij 为两点间的正常高高差,可通过水准测量精确测定。ΔHij 为两点间的大地高高差,可由高精度的GPS相对定位确定。所以,由此求出的两点间高程异常差Δξij 也是非常准确的。
反过来,我们以高程异常差Δξij 作为拟合量,代入公式(7)中,就可以得到求取Δξij 的函数。这样,我们就得到了每一待求点与基准点的高程异常差Δξij,通过RTK定位测量,我们可以得到每一待求点与基准点的大地高高差ΔHij,把它们代入公式(9)中,我们就得到了任意一点与基准点之间的正常高高差。
因此,在进行拟合时,我们采用相对处理的办法:
a 、从GPS网平差结果中提出各拟合点在WGS-84参考系上的大地高H;
b 、在已知高程h(当地高程基准上)的拟合点中,选定一参考点(最好在网的中部,高程为h0),计算其他各点相对于该点的高差:
Δhi = hi - h0
c 、设参考点在WGS-84参考系上的大地高为H0,计算其他各点相对于该点的大地高高差:
ΔHi = Hi - H0
d 、将Δξi=ΔHi-Δhi作为拟合量,求取拟合系数x。Δx、Δy为点i的纵、横坐标与基准点纵、横坐标之差。
Δξi = f(Δx,Δy)
e 、测区内每一点的高程hi= h0 + (ΔHi -Δξi)。
4 RTK定位技术实际应用
2002年12月,我们在天津新港地区布设了GPS控制网,该控制网包括7个控制点,这些点均有1954年北京坐标系平面坐标和基于新港理论最低潮面的高程。该控制网覆盖了整个新港港区,具体网形见图三。
该控制网采用4台Leica 双频GPS接收机进行观测,由两个同步四边形和一个同步三角形组成。我们拟在GPS-1点架设基准台,所以该站观测时间最长,约为3个半小时。经基线结算、自由网平差,
图三 天津新港GPS控制网示意图
我们得到了网中各点在WGS-84参考系下的空间三维坐标(X,Y,Z),网中各点同时具有1954年北京坐标系平面坐标和基于新港理论最低潮面的高程。我们进行了七参数转换和高程拟合,具体结果如下:
4.1 七参数转换
4.1.1 我们以GPS-1、GPS-6、GPS-7、GPS-4、GPS-3五点为公共点,进行椭球转换,采用最小二乘法计算出七参数,以GPS-2、GPS-5两点作为校核点,结果见下表:
点名 | Δx(m) | Δy(m) | Δh(m) |
GPS-2 | -0.015 | -0.025 | +0.027 |
GPS-5 | -0.065 | -0.013 | +0.017 |
4.1.2 我们在GPS-1点架设基准台,在GPS-3点架设移动台(两点间距离约为9公里),进行静态差分定位比对,结果如下:
平面内符合精度为:mx=±0.004米;
my=±0.005米;
m =±0.006米。
高程内符合精度为:mh=±0.006米。
平面外符合精度为: mx=±0.028米;
my=±0.038米;
m =±0.047米。
高程外符合精度为:mh=±0.006米。
4.1.3 我们在GPS-1点架设基准台,在测量船上架设移动台,以HYPACK MAX软件为平台,进行了无验潮水深测量(测量区域在天津新港一港池、新港主航道10+0附近)。分别采用RTK潮位和验潮站潮位对水深数据进行了改正处理,比对结果如下:
项目1 项目2 | 同一位置深度差的绝对值(米) | 平均值(米) | 标准差(米) | ||||
0 | 0~0.1 | 0.1~0.2 | 0.2~0.3 | >0.3 | |||
点数(总点数:4365) | 278 | 3361 | 588 | 135 | 3 | ||
所占比例 | 6.37% | 77.00% | 13.47% | 3.09% | 0.07% | 0.06 | ±0.04 |
4.2 高程拟合法
4.2.1 天津新港控制网中各点高程异常值见下表(单位:米):
点名 | 大地高(WGS-84) | 正常高 | 高程异常 |
GPS-2 | 6.0822 | 5.731 | +0.351 |
GPS-7 | 5.1602 | 4.578 | +0.582 |
GPS-6 | 6.5835 | 6.169 | +0.415 |
GPS-3 | 7.7038 | 7.390 | +0.314 |
GPS-1 | 11.8212 | 11.423 | +0.398 |
GPS-4 | 6.3102 | 5.913 | +0.397 |
GPS-5 | 6.5860 | 6.090 | +0.496 |
由上表可知:
(1)、各点的高程异常值比较
ζ最大值= +0.582m
ζ最小值= +0.314m
ζ平均值= +0.422m
(2)、高程异常的变化趋势
天津新港地区高程异常变化趋势为:由北向南逐渐增大。
(3)、决定采用的拟合方法:
由于该地区的高程异常变化较平缓,所以采用平面拟合即可。
4.2.2 拟合结果比较
(1)以GPS-1点为参考点,用GPS-3、GPS-7、GPS-4三点高程异常差拟合。
(单位:米)
点名 | 拟合高程 | 已知高程 | 较差 |
GPS-2 | 5.761 | 5.731 | 0.030 |
GPS-6 | 6.152 | 6.169 | -0.017 |
GPS-5 | 6.106 | 6.090 | 0.016 |
(2)、以GPS-1、GPS-3、GPS-7三点高程异常拟合。
(单位:米)
点名 | 拟合高程 | 已知高程 | 较差 |
GPS-2 | 5.758 | 5.731 | 0.027 |
GPS-6 | 6.148 | 6.169 | -0.021 |
GPS-5 | 6.106 | 6.090 | 0.016 |
GPS-4 | 5.871 | 5.913 | 0.042 |
由以上比对结果可以看出,不论采用七参数法,还是采用高程拟合法,RTK定位均可得到较高的精度,完全可以满足大比例尺地形测量和无验潮水深测量的要求。
5 RTK定位技术的局限性
5.1 进行RTK定位,岸台与船台之间需要传输的数据量很大(一般情况下,每秒发送一组数据),这就给数据传输设备提出了较高的要求。
5.2 受数据链作用距离的影响,作业范围难以扩大,一般在15公里左右,对于长距离的航道测量仍无法解决验潮问题。
5.3 受GPS接收条件的制约,RTK技术在开阔的区域,效果明显。不适宜于有大型装卸设备的码头前沿、泊位测量;不适宜于建筑物密集的区域测量。
5.4 RTK远距离的动态初始化给无验潮水深测量和地形测量的测量条件提出了较高的要求。