同余的一个定理的证明a,p互质,k=1,2,3,...,p-1.ka (mod p)单射且满射到集合A={1,2,3,...,p-1}

UTF8gbsn

证明:如果a,p互质。令 k ∈ { 1 , 2 , 3 , . . . , p − 1 } k\in \{1,2,3,...,p-1\} k{1,2,3,...,p1}那么。
k a ( m o d p ) ka\quad (mod\quad p) ka(modp)

会映射到 { 1 , 2 , 3 , . . . , p − 1 } \{1,2,3,..., p-1\} {1,2,3,...,p1}.并且是单射和满射加粗样式

举个例子4,5互质。那么我们看当令 a = 4 , p = 5 a=4,p=5 a=4,p=5

kka (mod p)
14
23
32
41

证明:

  1. 如果a,p互质,那么如果p无法整除k。则 p p p无法整除 a k ak ak。这个命题是显而易见的。有了这个命题。我们可以进行下面的论证。

  2. 对于 k ∈ { 1 , 2 , 3 , . . . , p − 1 } k\in \{1,2,3,...,p-1\} k{1,2,3,...,p1},p无法整除ak。因为 k < p k<p k<p.所以ak除以p都会有余数。而且余数 q ∈ { 1 , 2 , 3 , . . . , p − 1 } q\in \{1,2,3,...,p-1\} q{1,2,3,...,p1}

  3. 下面我们来证这个映射是单射。其实只需要正 i , j ∈ { 1 , 2 , 3 , . . . , p − 1 } , i ≠ j i,j\in \{1,2,3,...,p-1\},i\neq j i,j{1,2,3,...,p1},i=j的余数不同即可。假如
    a i − a j ≡ 0 ( m o d p ) ai-aj\equiv 0\quad (mod \quad p) aiaj0(modp)

    a ( i − j ) ≡ 0 ( m o d p ) a(i-j)\equiv 0 \quad (mod \quad p) a(ij)0(modp)

    其中,不是去一般性,我们可以假设 i > j i>j i>j, i − j ∈ { 1 , 2 , 3... , p − 2 } i-j\in \{1,2,3...,p-2\} ij{1,2,3...,p2}。如果 a ( i − j ) ≡ 0 ( m o d p ) a(i-j)\equiv 0 \quad (mod \quad p) a(ij)0(modp)则说明,某个ak除以p有余数,这和我们第二步得出的结论矛盾。所以可以得出,只要 i ≠ j i\neq j i=j那么她们两个的余数就不会相同。根据单射和满射的定义。原命题得证。(你有n的函数都会映射到一个n个元素互不相同的集合A,而这n个函数的结果互不相同,则这是一个单射且是满射)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值