fastq fasta 序列数快速统计

fasta序列条数统计

统计大于号开始的行数或seqkit 工具

# 通过搜索>的数量
grep -c '^>' myFasta.fasta

#seqkit统计提取,速度也是很快的
seqkit stats t.fa -T | grep -v file | cut -f 4

# 统计 1-100bp 范围长的序列数
cat t.fa | seqkit seq -m 1 -M 100 | seqkit stat -T | grep -v file | cut -f 4

fastq序列条数统计

压缩格式解压,统计行数除以4

# 通常以fastq.gz格式压缩
zcat  input.fastq.gz | awk 'NR%4==2{c++} END{print c}'

# 推荐下面的方法 pigz 会比gzip快10倍
pigz -dc input.fastq.gz | awk 'NR%4==2{c++} END{print c}'

# 如果不是压缩格式
cat input.fastq | awk 'NR%4==2{c++} END{print c}'
### 使用 R 语言解析处理 FASTQ 格式文件 在生物信息学领域,FASTQ 文件是一种常见的序列存储格式,包含了 DNA 或 RNA 序列及其对应的碱基质量分。为了使用 R 语言高效地解析处理这些文件,可以借助 Bioconductor 提供的相关包。 #### 安装必要的 R 包 Bioconductor 是一个专门为生物学据分析设计的开源软件集合。其中 `ShortRead` `Rsamtools` 是两个常用的用于处理 FASTQ 文件的 R 包。 安装方法如下: ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(c("ShortRead", "Rsamtools")) ``` #### 加载所需库并读取 FASTQ 文件 加载上述包后,可以通过以下方式读取 FASTQ 文件: ```r library(ShortRead) # 假设 fastq 文件路径为 'path/to/file.fastq' fq_file <- "path/to/file.fastq" # 创建 FastqReader 对象 reader <- FastqReader(fq_file) # 读取前 N 条记录(例如前 10 条) reads <- readFastq(reader, n=10) ``` 通过这种方式,可以从 FASTQ 文件中提取出序列以及对应的质量分组成的对象。 #### 质量控制与过滤 对于高质量据筛选的需求,可以直接利用 `filterBases` 函对低质量碱基进行修剪或移除。以下是具体操作示例: ```r # 设置最低质量阈值(例如 Phred >= 20 的碱基保留) filtered_reads <- filterBases(reads, minQuality=20) # 查看过滤后的结果 summary(filtered_reads) ``` 如果需要进一步转换为其他格式(如 FASTA),可采用以下命令完成转化过程[^1]: ```r writeXStringSet(as(filtered_reads, "DNAStringSet"), file="output.fasta") ``` 此代码片段会将经过滤后的序列保存到指定位置下的 `.fasta` 文件当中。 #### 判断 FASTQ 编码格式 由于存在多种不同的质量评分体系,在实际应用之前需确认目标 FASTQ 据所属的具体类型。虽然没有单一内置函能够自动识别所有可能的情况,但可通过统计分布特性辅助判定[^3]。一种常见做法是从原始输入抽取部分样本观察其 ASCII 字范围是否匹配已知标准表中的定义区间。 另外值得注意的是某些工具比如 fqtools 可能提供更便捷的方式来进行此类检测工作[^2];不过目前讨论的重点在于纯基于 R 实现方案上。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值