5分钟教会你在电脑部署AI大模型:一劳永逸的AI解决方案!

随着人工智能(AI)和机器学习(ML)技术的迅猛发展,AI模型的规模和复杂度也在不断增加。这些大规模模型,如大型语言模型(LLMs)、计算机视觉模型和复杂的推荐系统,通常需要大量的计算资源来训练和推理。云计算平台提供了便捷的解决方案,但本地部署AI大模型有其独特的优势和必要性。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

大模型本地部署,顾名思义就是把大模型部署到我们本地的笔记本或者台式机上。

为什么选择本地部署AI大模型?

1. 数据隐私与安全性

本地部署可以更好地保护数据隐私,避免将敏感数据传输到云端,减少数据泄露的风险。对于某些行业,如医疗、金融、政府等,对数据安全和隐私的要求尤为严格。

2. 控制与独立性

本地部署允许用户完全控制模型的运行环境、数据处理和模型更新,减少对第三方服务的依赖,提供更高的自主性和灵活性。

3. 性能与成本

在某些情况下,本地部署可以提供更好的性能,特别是当需要频繁进行推理时。同时,长期来看,本地部署可能比持续使用云服务更具成本效益。

4.科研需求

在一个局域网内,可以在服务器部署一个AI大模型,在内网局域网内基本上所有人都可以用这个大模型,可以说很方便。

由于大模型本身动辄几十亿甚至上百亿的参数,使用普通的方法去部署大模型会非常吃力。为此,研究员们开发了很多本地部署的框架的应用来帮助我们更好的进行本地部署。

可本地部署的AI大模型盘点

1. ollama 本地部署

首先声明一下,ollama包括一些其他的AI大模型,都是比较吃GPU的,因此运存这个玩意就比较重要了。个人感觉,如果拿笔记本部署的话6G以上肯定要有,不然根本跑不起来

既然是本地部署,首先肯定要先下载一个本地部署的软件或者工具,作为一个载体。安装包获取在文末。

下载完成以后,双击安装就可以,点击install直接安装就行,不用多管。

个人感觉这个羊驼,有点可爱

因为这个Ollama 默认是没有 webui 界面的,因此如果想要安装的话,需要另外安装anythingllm或者Docker。这两个的安装包也在文末。

anythingllm的配置:

双击安装包以后,正常安装流程。等待安装完成以后,进入界面

点击,Getstart,后面就开始配置使用了

注意这个地方标清了具体所需的内存大小,所以一定要保证内存是够的。

点击激活以后,后面就可以使用了。

安装Docker:

安装包在文末可以获取

双击exe文件

点击ok等待安装完成,可能需要重启电脑

回到桌面以后,双击安装的Docker,点击Accept,在选择第一个就可以

然后再按windows+r,输入cmd,然后输入

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

安装完成通过本地地址:http://127.0.0.1:3000 进行访问,看到下方页面说明安装成功!

然后按sign in登陆进去,在选择自己想要的模型就行

2、GPT4All

GPT4All 是一个开源项目,旨在提供一个易于使用的平台,让任何人都能在本地设备上都能免费运行和体验大型语言模型(LLM)如GPT(Generative Pre-trained Transformer)系列模型。它的目标是使人工智能技术更普及和可访问,特别是对于那些没有强大计算资源或云服务访问权限的用户。

以下是GPT4All支持的Ai大模型!

  • GPT-3

  • GPT-Neo

  • GPT-J

  • LLaMA

  • Grok

找到文末获取的安装包,双击安装包

基本上点下一步下一步就行了,注意修改安装路径

然后在桌面上找到GPT4All,双击打开

下载我们想要的模型,这里以目前在开源大模型领域,最强的Llama3为例!

下载完模型以后,选择模型进行聊天就行了!

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值