毫米波雷达系列(五):4D成像毫米波雷达、一般毫米波雷达、激光雷达的优劣势对比

本文比较了4D成像毫米波雷达与一般毫米波雷达和激光雷达在自动驾驶中的性能、成本与应用场景。4D雷达具有高精度但成本高,而激光雷达虽便宜但应用早。未来,随着技术进步,4D雷达将在高级别自动驾驶中得到更多应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平时的工作中,经常会遇到三种“雷达”的选择问题:4D成像毫米波雷达、一般毫米波雷达和激光雷达
本文简要分析一下4D成像毫米波雷达相对于一般毫米波雷达和激光雷达的优劣势,以及结合场景,提供一些选型的初步建议。

1. 基本概念

先明确一下本文所指的这3个“雷达”的定义:

  • 4D成像毫米波雷达:具备较高俯仰测角分辨率的、点云密度在3万点/秒以上的前向4D毫米波雷达,例如Conti ARS540,BOSCH FR5CU,ZF FRGen21,Aptiv FLR7HD等;
  • 一般毫米波雷达:不具备很高俯仰测角分辨率的、点云密度在4000点/秒以下的前向(3D)毫米波雷达,主要用于L2及以下场景,例如BOSCH FR5CP,Conti ARS410等;
  • 激光雷达:目前主流的半固态前向长距主激光雷达,例如禾赛AT128,速腾M1P等;

2. 4D成像毫米波雷达 vs 一般毫米波雷达

4D成像毫米波雷达和一般毫米波雷达的对比,汇总如下表所示:

可以看出,4D成像毫米波雷达性能整体超越一般毫米波雷达,但是

### 4D 毫米波雷达点云数据处理及应用 #### 理解4D毫米波雷达特性 4D毫米波雷达能够提供距离、速度、水平角度以及俯仰角度四个维度的数据,这使得该技术不仅限于检测物体的存在与否,还能精确描绘目标的空间位置及其运动状态。相较于传统的三维毫米波雷达增加了高度信息的获取能力[^1]。 #### 点云数据预处理 对于来自4D毫米波雷达传感器采集到的大规模原始点云数据,在实际应用前通常需要经过一系列预处理操作来提高后续分析的有效性和准确性: - **去噪**:去除由于环境干扰或其他因素引起的异常值; - **坐标转换**:将不同视角下的测量结果统一至同一参考系内; - **下采样**:减少冗余点的数量以降低计算复杂度; 这些步骤有助于改善输入质量并加速算法执行效率[^2]。 #### 关键技术实现 为了更好地理解和利用4D毫米波雷达成像特点,可以采用MATLAB等工具来进行模拟实验或数据分析工作。下面是一个简单的例子展示如何生成基本的点云图像: ```matlab % 创建随机分布的目标点集作为示例数据源 numPoints = 500; pointsXYZV = randn(numPoints, 4); % XYZ表示空间坐标,V代表反射强度(即亮度) figure; scatter3(pointsXYZV(:,1), pointsXYZV(:,2), pointsXYZV(:,3), ... [], pointsXYZV(:,4), 'filled'); colorbar; title('Simulated Point Cloud from 4D mmWave Radar'); xlabel('X Axis (meters)'); ylabel('Y Axis (meters)'); zlabel('Z Axis (height meters)'); ``` 此段代码创建了一组带有噪声特性的虚拟对象,并通过`scatter3()`函数绘制出了它们在三维空间中的相对位置关系图谱。这种可视化方法可以帮助研究人员直观感受所研究场景内的结构布局情况。 #### 实际应用场景探讨 随着自动驾驶汽车和其他智能交通系统的快速发展,4D毫米波雷达因其全天候工作的优势而备受关注。具体来说,在恶劣天气条件下(如下雨、大雾),光学摄像头可能无法正常运作时,这类设备却依然能保持较高的探测精度和可靠性。此外,它还可以应用于无人机避障导航、工业自动化等领域中,为机器视觉提供了更加丰富的感知手段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值