平时的工作中,经常会遇到三种“雷达”的选择问题:4D成像毫米波雷达、一般毫米波雷达和激光雷达。
本文简要分析一下4D成像毫米波雷达相对于一般毫米波雷达和激光雷达的优劣势,以及结合场景,提供一些选型的初步建议。
1. 基本概念
先明确一下本文所指的这3个“雷达”的定义:
- 4D成像毫米波雷达:具备较高俯仰测角分辨率的、点云密度在3万点/秒以上的前向4D毫米波雷达,例如Conti ARS540,BOSCH FR5CU,ZF FRGen21,Aptiv FLR7HD等;
- 一般毫米波雷达:不具备很高俯仰测角分辨率的、点云密度在4000点/秒以下的前向(3D)毫米波雷达,主要用于L2及以下场景,例如BOSCH FR5CP,Conti ARS410等;
- 激光雷达:目前主流的半固态前向长距主激光雷达,例如禾赛AT128,速腾M1P等;
2. 4D成像毫米波雷达 vs 一般毫米波雷达
4D成像毫米波雷达和一般毫米波雷达的对比,汇总如下表所示:
可以看出,4D成像毫米波雷达性能整体超越一般毫米波雷达,但是成本较高。
其中,较高数量的点云密度、较高的角度分辨率和高度测量能力,使得4D成像毫米波雷达可以大幅扩展应用场景。
不过在实际的量产车辆中,4D成像毫米波雷达应用还较少,我想主要原因可能有3个:
- 一般毫米波雷达可以解决大部分L2场景的应用,并且由于应用时间很长,技术成熟,出货量大,成本已经下探到300元级别,主机厂不太有动力替换价格更高的4D成像毫米波雷达;
- 4D成像毫米波雷达应用经验比较少,主机厂或者算法公司还不清楚怎么能够用好4D成像毫米波雷达,还不了解如何发挥其潜能,例如更多数量的点云,更高的角度分辨率和角精度;
- 激光雷达虽然价格比4D成像毫米波雷达更贵,但是由于点云密度更多,行业应用较早,经验较为丰富,并且由于宣传的原因,配置激光雷达的车辆让人感觉更有“高科技”的属性,看起来具有“性价比”。因此在高级别自动驾驶汽车中,主机厂反而更倾向于配置价格更贵的激光雷达,而不是4D成像毫米波雷达;
随着4D成像毫米波雷达逐渐被人们所熟知,技术本身继续迭代演进,越来越多的对自动驾驶级别要求较高(L2+,L3及以上)的中高端车型,正在逐步采用4D成像毫米波雷达,例如特斯拉,蔚来ET9,理想等。
装备4D成像毫米波雷达的蔚来ET9:
3. 4D成像毫米波雷达 vs 激光雷达
4D成像毫米波雷达和激光雷达的对比,汇总如下表所示:
其中,4D成像毫米波雷达的点云密度基本与32线激光雷达相当,与目前主流的百线以上激光雷达差距较大。
激光雷达和4D成像毫米波雷达点云对比如下所示。白色点:激光雷达,绿色点:4D毫米波雷达(来源:TJ4DRadSet数据集)
图片来源:4D Millimeter-Wave Radar in Autonomous Driving A Survey
受限于两者探测原理不同,4D成像毫米波雷达在点云密度指标上不可能和激光雷达相比,但是在测距、测速、穿透性、环境适应性等方面有独到的优势。
因此,在实际的自动驾驶系统中,可以充分结合两者的特点,通过互补和冗余,取长补短,发挥各自的优势。
例如,在可穿透性方面,毫米波雷达能够穿透物体,透过前方障碍物探测到前前方目标,而激光雷达无法穿透。例如如果前前车刹车,毫米波雷达能够探测到前前车刹车动作,并提前做出预判,避免追尾。
雷达识别前前车:
另外,在有一些狭窄场景,毫米波雷达电磁波可以通过衍射、折射等,检测到激光雷达无法检测的区域,例如:
4. 总结
随着号称最排斥雷达技术的特斯拉,在新车中也开始装备4D成像毫米波雷达,同时采用性能更强、集成度更高专用芯片的4D成像毫米波雷达逐渐量产,我相信其特性慢慢被开发工程师所熟悉,其潜能也会逐渐被挖掘出来。
在未来的自动驾驶系统解决方案中,4D成像毫米波雷达一定可以发挥出其重要而独特的作用。
TESLA装配的4D成像毫米波雷达
我是雪岭飞花,汽车行业24年开发经验,自动驾驶行业发展的见证者和参与者,自动驾驶感知和控制系统资深专家。做有深度、高质量的技术分享,推动自动驾驶技术的普及和发展。
更多文章请参考:雪岭飞花:文章索引 - 知乎
如果文章对您有帮助,还请关注、点赞、收藏。如有疏漏或者错误,还请批评指正。
微信公众号:雪岭飞花
微信: maxhnnl
知乎: https://www.zhihu.com/people/lwascl-73