毫米波雷达系列(六):4D成像毫米波雷达产品汇总(1/3)

文章探讨了4D成像毫米波雷达在2023年初的复兴,特别是特斯拉的参与,以及大陆ARS540的特性。文章将分析国内外主要雷达厂商的产品方案和特点,预测4D成像雷达在自动驾驶领域的潜在发展和与激光雷达的竞争。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

2020年9月,大陆发布成像雷达大陆 ARS540,从此,雷达进入4D成像时代。通过生成相对密集的点云,毫米波雷达也从仅对外输出少量目标,变为能够更精细的刻画周围环境。一时间,4D成像毫米波雷达成为自动驾驶开发圈争相追捧的明星。

不过,由于成本较高,再加上另一个“更红的”明星同一时间冉冉升起,在之后的2年里,4D成像毫米波雷达除了在宝马、飞凡R7、路特斯等少量车型上上车之外,并没有人们当初想象中大规模上车,显得有些冷落

时间来到2023年初,在毫米波雷达圈突然传出了一个爆炸的新闻。一向diss雷达技术的特斯拉,居然在FCC美国联邦通信委员会中,注册了一款4D毫米波雷达,并提交了详细的合规测试报告。至此,4D成像毫米波雷达又被拉回到公众视野,甚至一时间,“4D成像毫米波雷达能否取代激光雷达”的讨论,不绝于耳。

前面文章分析了4D毫米波雷达的基本概念和优劣势,接下来3篇文章,会简要梳理一下国内外主要的毫米波雷达厂家在4D成像雷达的布局,雷达产品的基本方案和主要特点。从市场产品布局的角度,尝试分析一下4D成像毫米波雷达未来的发展趋势。

  1. 本篇:国外传统雷达厂商的4D成像雷达产品
  2. 第二篇:国内雷达厂商的4D成像雷达产品
  3. 第三篇:新型雷达方案厂商的4D成像雷达产品,以及发展趋势总结

2. 大陆:ARS540

ARS540是大陆第五代长距雷达的高配版本,在宝马的 iX 纯电动 SUV上量产。


平时也经常听到ARS548,其实ARS548和ARS540硬件相同,是ARS540的工业版本。ARS548使用特定的固件可以应用于其他各种工业场景。


2.1 系统架构

  • MMIC和天线:4*MR3003(NXP),12T16R,腔体波导天线

图片来源:赵孔瑞

  • 处理器:XAZU5E



2.2 性能指标

  • 距离(范围、精度、分辨率):300m,0.15m,0.22m
  • 速度(范围、精度、分辨率):-400~+200kph,±0.1kph,0.35kph
### 4D毫米波雷达的探测精度 #### 前向雷达的技术参数与性能分析 当前市场上一些领先的前向4D毫米波雷达产品的角度分辨率和角度精度表现出色。例如,福瑞泰克的FVR40支持1度的角度分辨率,而大陆集团的ARS540则实现了更高的角度精度,达到了0.1度[^3]。 对于距离测量方面,这类设备通常具备较远的有效工作范围,最远可至300米的距离检测能力同样由上述提到的产品所展示出来。这表明即使是在高速行驶场景下也能保持良好的环境感知效果。 #### 角雷达的表现特点 相比之下,角雷达虽然整体性能要求不如前者严格,但在某些特定场合仍然发挥着重要作用。比如博世推出的第五代产品也加入了对俯仰方向的支持,不过它的最大探测界限设定为160米,并且在角度分辨力上有所欠缺。 综上所述,不同应用场景决定了各类型号间存在差异化的技术指标设置;而对于追求极致精确度的应用而言,显然那些具有更精细角度控制能力和较长作用半径的型号会更加适合。 ```python # Python代码用于模拟计算给定条件下两个物体之间的相对位置关系(仅作示意) def calculate_relative_position(object_1, object_2): distance = ((object_1[&#39;x&#39;] - object_2[&#39;x&#39;]) ** 2 + (object_1[&#39;y&#39;] - object_2[&#39;y&#39;]) ** 2) ** 0.5 angle_resolution = 0.1 # 使用高精度雷达如ARS540的角度精度作为示例 max_distance = 300 # 设定最长有效探测距离为300m if distance <= max_distance and abs(angle_difference(object_1, object_2)) >= angle_resolution: return "Object detected within range with sufficient angular resolution." else: return "Detection not possible under current conditions." def angle_difference(obj_a, obj_b): import math delta_x = obj_a[&#39;x&#39;] - obj_b[&#39;x&#39;] delta_y = obj_a[&#39;y&#39;] - obj_b[&#39;y&#39;] theta = math.atan2(delta_y, delta_x) return theta * (180 / math.pi) # 测试函数调用 print(calculate_relative_position({&#39;x&#39;: 10, &#39;y&#39;: 20}, {&#39;x&#39;: 100, &#39;y&#39;: 20})) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值