chip-seq处理

1. macs3识别

macs3 callpeak -c SRR15567099.bam -t SRR13755437.bam -p 1e-10 -f BAM -g hs -n HMEC_rep1 --call-summits --outdir ./output
macs3 callpeak -c SRR15567100.bam -t SRR13755438.bam -p 1e-10 -f BAM -g hs -n HMEC_rep2 --call-summits --outdir ./output

识别得到的结果:

查看

wc -l HMEC_rep1_peaks.narrowPeak
wc -l HMEC_rep2_peaks.narrowPeak

2. bedtools合并生物重复

bedtools intersect -a HMEC_rep1_peaks.narrowPeak -b HMEC_rep2_peaks.narrowPeak -f 0.50 > hmec_both_peaks.bed
sort -k1,1 -k2,2n -k7,7nr HMEC_both_peaks.bed | awk '!seen[$1$2$3]++' > filtered_peaks.bed
bedtools intersect -a filtered_peaks.bed -b /student2/graduate/result/all_promoter.bed -v > peaks_without_promoters.bed
awk '{print $1"\t"$2"\t"$3"\t"$7}' peaks_without_promoters.bed > peaks_without_promoters.bedGraph
  • -f 0.75:设置重叠至少达到75%

Chip-seq是一种常用的高通量测序技术,用于研究转录因子与染色体上的特定DNA序列的相互作用。在进行Chip-seq实验时,需要处理输入(input)数据。 输入数据是用于对照的样本,其中不添加任何特定的抗体,仅与转录因子结合的非特异性DNA序列。通过与ChIP样本进行对比,可以更准确地确定结合位点和调控区域。 处理input数据的步骤如下: 1. 数据质量控制:对input数据进行质量控制,包括检查测序质量、去除低质量的reads和去除接头序列等。 2. 比对到参考基因组:使用比对算法将input数据与参考基因组进行比对,以确定每个reads的位置。 3. 移除PCR重复:由于PCR扩增会引入偏差,需要移除PCR重复的reads,以避免伪阳性结果。 4. 去除黑名单区域:黑名单区域包括重复序列、低复杂度区域和其他会干扰Chip-seq结果的区域,需要从input数据中去除。 5. 突变校正:由于碱基突变和背景噪音的存在,需要对input数据进行突变校正,以提高信噪比。 6. 结合位点识别:通过与ChIP样本进行比对,确定input数据中的结合位点。此步骤可以使用多种算法,如MACS、SICER等。 7. 数据过滤和统计:根据预设的统计学阈值和过滤标准,对input数据中的结合位点进行过滤和统计,以确定显著的调控区域。 处理input数据的目的是建立一个对照组,用于确定实验结果中的真实结合位点和调控区域。通过与ChIP样本进行比较,可以排除背景噪音、探测假阳性结果,并提高Chip-seq的可靠性和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值