一、处理过程
要处理 SRR14879780 的 ChIP-seq 数据并进行基序分析(包括比对到参考基因组 hg38.fasta 和峰值调用),你可以按照以下步骤操作,并使用相应的代码。每个步骤会涉及一些常用的生物信息学工具,如 FastQC、Trim Galore、Bowtie2、samtools、MACS2 和 MEME-ChIP。
1. 准备环境
你需要先安装必要的工具,如 Bowtie2、samtools、MACS2 和 MEME-ChIP。你可以使用 conda
来安装这些工具:
# 使用conda安装工具
conda install -c bioconda fastqc trim-galore bowtie2 samtools macs2 meme
2. 下载数据
首先,下载你需要的原始 SRA 数据 和 hg38 参考基因组。
# 下载sra数据并转换为fastq文件
prefetch SRR14879780
fastq-dump SRR14879780.sra
fasterq-dump SRRxxxxxx #比 fastq-dump 更快速的工具,适用于大数据集。
# 下载hg38参考基因组并建立索引
wget https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz #下载hg38
gunzip GCF_000001405.40_GRCh38.p14_genomic.fna.gz #解压下载的fasta文件
samtools faidx hg38.fa #为fasta文件建立索引
less hg38.fa #查看fasta文件
(可选)数据质量控制分析
# 质控分析
fastqc SRR14879780_1.fastq
可以生成测序数据的质量特征报告,比如碱基质量分布、GC 含量、序列长度分布等
(可选)数据修剪
在对数据进行处理前,先检查测序数据fastq的质量,使用 FastQC 进行质控分析:
# 使用Trim Galore修剪低质量reads
trim_galore --paired --fastqc --length 50 input_R1.fastq input_R2.fastq
--paired
表示处理双端测序数据。--fastqc
表示在修剪后生成FastQC报告以评估数据质量。--length 50
表示保留长度至少为50bp的reads。
这里之所以有两个输入文件,是因为双端测序会产生两对末端测序数据,一个是前向读取一个是后向读取。