转换为onnx模型错误汇总

本文汇总了在将PyTorch模型转换为ONNX格式时遇到的常见错误及其解决方案,包括DataParallel包裹问题、稀疏矩阵运算不支持、非tensor数据类型、Gather操作非静态和 Upsample 操作对齐方式不兼容等。通过针对性地调整代码,可以成功导出ONNX模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、ValueError: torch.nn.DataParallel is not supported by ONNX exporter, please use 'attribute' module to unwrap model from torch.nn.DataParallel. Try torch.onnx.export(model.module, ...)

多GPU环境下训练的模型在导出onnx文件时,可能会报以上错误。

是因为加载模型前加了此句,model = nn.DataParallel(model)

如果不加,依然报错,如图看到参数字典多了一个module.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HySmiley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值