- 极大似然估计:
y = p ( x 1 , x 2 , x 3 , . . . , x n ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 y = p(x_1,x_2,x_3,...,x_n) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} y=p(x1,x2,x3,...,xn)=2πσ1e−2σ2(x1−μ)22πσ1e−2σ2(x2−μ)2...2πσ1e−2σ2(xn−μ)2
l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 lny = ln p(x_1,x_2,x_3,...,x_n) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} ) =\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} lny=lnp(x1,x2,x3,...,xn)=ln(2πσ1e−2σ2(x1−μ)22πσ1e−2σ2(x2−μ)2...2πσ1e−2σ2(xn−μ)2)=−nln(2πσ)−i=1∑n2σ2(xi−μ)2
要求y的极限值(将 μ 和 σ \mu 和 \sigma μ和σ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:
∂
ln
y
∂
μ
=
∑
i
=
1
n
(
x
i
−
μ
)
σ
2
=
0
\frac{\partial \ln y}{\partial \mu} = \sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} = 0
∂μ∂lny=i=1∑nσ2(xi−μ)=0
即:
μ
=
1
n
∑
i
=
1
n
(
x
i
)
\mu = \frac{1}{n}\sum_{i=1}^{n} (x_i)
μ=n1∑i=1n(xi)
∂
ln
y
∂
σ
=
−
n
1
σ
+
∑
i
=
1
n
(
x
i
−
μ
)
2
σ
3
=
0
\frac{\partial \ln y}{\partial \sigma} =-n\frac{1}{\sigma} +\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma ^ 3} = 0
∂σ∂lny=−nσ1+i=1∑nσ3(xi−μ)2=0
即:
σ
2
=
∑
i
=
1
n
(
x
i
−
μ
)
2
n
\sigma^2 = \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n}
σ2=∑i=1nn(xi−μ)2
- 后验估计(贝叶斯估计):
y = p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 y = p(x_1,x_2,x_3,...,x_n;\theta_0) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0} e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} y=p(x1,x2,x3,...,xn;θ0)=2πσ1e−2σ2(x1−μ)22πσ1e−2σ2(x2−μ)2...2πσ1e−2σ2(xn−μ)22πσ01e−2σ02(μ0−μ)2
l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 − l n ( 2 π σ 0 ) − ( μ 0 − μ ) 2 2 σ 0 2 lny = ln p(x_1,x_2,x_3,...,x_n;\theta_0) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0}e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} )=\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} -ln(\sqrt{2 \pi} \sigma _0) -\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2} lny=lnp(x1,x2,x3,...,xn;θ0)=ln(2πσ1e−2σ2(x1−μ)22πσ1e−2σ2(x2−μ)2...2πσ1e−2σ2(xn−μ)22πσ01e−2σ02(μ0−μ)2)=−nln(2πσ)−i=1∑n2σ2(xi−μ)2−ln(2πσ0)−2σ02(μ0−μ)2
要求y的极限值(将 μ 和 σ \mu 和 \sigma μ和σ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:
∂ ln y ∂ μ = ∑ i = 1 n ( x i − μ ) σ 2 + ( μ 0 − μ ) σ 0 2 = 0 \frac{\partial \ln y}{\partial \mu} = \sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} +\frac{(\mu_0- \mu)}{\sigma_0 ^ 2} = 0 ∂μ∂lny=i=1∑nσ2(xi−μ)+σ02(μ0−μ)=0
即:
∂
ln
y
∂
μ
=
1
σ
2
∑
i
=
1
n
x
i
−
n
μ
σ
2
+
μ
0
σ
0
2
−
μ
σ
0
2
=
0
\frac{\partial \ln y}{\partial \mu} = \frac{1}{\sigma^2}\sum_{i=1}^{n} x_i - \frac{n\mu}{\sigma^2}+ \frac{\mu_0}{\sigma_0 ^ 2} - \frac{\mu}{\sigma_0 ^ 2}= 0
∂μ∂lny=σ21i=1∑nxi−σ2nμ+σ02μ0−σ02μ=0
1 σ 2 ∑ i = 1 n x i + μ 0 σ 0 2 = ( n σ 2 + 1 σ 0 2 ) μ \frac{1}{\sigma^2}\sum_{i=1}^{n} x_i + \frac{\mu_0}{\sigma_0 ^ 2} = ( \frac{n}{\sigma^2} +\frac{1}{\sigma_0 ^ 2} )\mu σ21i=1∑nxi+σ02μ0=(σ2n+σ021)μ
μ = 1 σ 2 ∑ i = 1 n x i + μ 0 σ 0 2 n σ 2 + 1 σ 0 2 \mu = \frac{ \frac{1}{\sigma^2}\sum_{i=1}^{n} x_i + \frac{\mu_0}{\sigma_0 ^ 2} }{\frac{n}{\sigma^2} +\frac{1}{\sigma_0 ^ 2} } μ=σ2n+σ021σ21∑i=1nxi+σ02μ0
这里要注意的是,贝叶斯估计在 θ 0 \theta_0 θ0处的先验概率的计算方式,此时要将 u 0 和 σ 0 当作先验参数 u_0和\sigma_0当作先验参数 u0和σ0当作先验参数