曲线(曲面)积分的物理含义

本文解释了曲线积分和曲面积分的概念,以抛物线为例计算了一类和二类积分,并指出它们在物理中的意义,如质量、功和流量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

初次接触曲线曲面积分,概念上可能难以理解,本文主要是为了强化一下记忆、加深理解而作。

曲线(曲面)积分不同于积分学中所说的一般积分,一般的积分是积分区域在常数范围内的积分,而曲线积分是被积函数在曲线(曲面)函数上的积分,跟变上限(下限)积分意思相近。

若曲线是一条曲线,第一类曲线积分的物理含义代表曲线的质量,被积函数代表线密度;第二类曲线积分代表所作的功,被积函数代表力。

若曲线是一个曲面,第一类曲面积分的物理含义代表曲面的质量,被积函数代表面密度;第二类曲线积分代表所作的功、径流量,被积函数代表力或者流量等。

同济版《高等数学》下册曲线积分第一个例子:

计算 ∫ L y d s ,其中 L 是抛物线 y = x 2 上点 O ( 0 , 0 ) 与点 B ( 1 , 1 ) 之间的一段弧。 计算\int _L \sqrt{y }ds,其中L是抛物线y = x^2上点O(0,0)与点B(1,1)之间的一段弧。 计算Ly ds,其中L是抛物线y=x2上点O(0,0)与点B(1,1)之间的一段弧。

解:
曲线积分的含义,可以理解为线密度和曲线长度的乘积之和。其中积分号中的表达式为线密度,s看作曲线的长度,也即对曲线的长度积分。

d s = d x 2 + d y 2 = 1 + d 2 y d 2 x d x ds = \sqrt{dx^2 + dy^2} = \sqrt{1+\frac{d^2y}{d^2x}}dx ds=dx2+dy2 =1+d2xd2y dx
要注意的是,这里 d y 2 = ( d y ) 2 = 4 x 2 dy^2 = (dy)^2 =4x^2 dy2=(dy)2=4x2,而不是 x 4 x^4 x4,因为 d y / d x = 2 x , d y 2 / d x 2 = 4 x 2 dy/dx =2x,dy^2/dx^2=4x^2 dy/dx=2x,dy2/dx2=4x2

∫ L y d s = ∫ L x 2 1 + d 2 y d 2 x d x = ∫ 0 1 x 1 + 4 x 2 d x \int _L \sqrt{y }ds = \int_L \sqrt{x^2} \sqrt{1+\frac{d^2y}{d^2x}}dx=\int_0^1 x \sqrt{1+4x^2}dx Ly ds=Lx2 1+d2xd2y dx=01x1+4x2 dx

第一类曲线积分可以看做对曲线的线密度的积分,第二类曲线积分,可以看作对坐标轴的单重积分。

第一类曲面积分可以看做对三维空间的面密度的积分,第二类曲面积分,可以看作对坐标平面的一般二重积分或者流量积分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值