初次接触曲线曲面积分,概念上可能难以理解,本文主要是为了强化一下记忆、加深理解而作。
曲线(曲面)积分不同于积分学中所说的一般积分,一般的积分是积分区域在常数范围内的积分,而曲线积分是被积函数在曲线(曲面)函数上的积分,跟变上限(下限)积分意思相近。
若曲线是一条曲线,第一类曲线积分的物理含义代表曲线的质量,被积函数代表线密度;第二类曲线积分代表所作的功,被积函数代表力。
若曲线是一个曲面,第一类曲面积分的物理含义代表曲面的质量,被积函数代表面密度;第二类曲线积分代表所作的功、径流量,被积函数代表力或者流量等。
同济版《高等数学》下册曲线积分第一个例子:
计算 ∫ L y d s ,其中 L 是抛物线 y = x 2 上点 O ( 0 , 0 ) 与点 B ( 1 , 1 ) 之间的一段弧。 计算\int _L \sqrt{y }ds,其中L是抛物线y = x^2上点O(0,0)与点B(1,1)之间的一段弧。 计算∫Lyds,其中L是抛物线y=x2上点O(0,0)与点B(1,1)之间的一段弧。
解:
曲线积分的含义,可以理解为线密度和曲线长度的乘积之和。其中积分号中的表达式为线密度,s看作曲线的长度,也即对曲线的长度积分。
d
s
=
d
x
2
+
d
y
2
=
1
+
d
2
y
d
2
x
d
x
ds = \sqrt{dx^2 + dy^2} = \sqrt{1+\frac{d^2y}{d^2x}}dx
ds=dx2+dy2=1+d2xd2ydx
要注意的是,这里
d
y
2
=
(
d
y
)
2
=
4
x
2
dy^2 = (dy)^2 =4x^2
dy2=(dy)2=4x2,而不是
x
4
x^4
x4,因为
d
y
/
d
x
=
2
x
,
d
y
2
/
d
x
2
=
4
x
2
dy/dx =2x,dy^2/dx^2=4x^2
dy/dx=2x,dy2/dx2=4x2
∫ L y d s = ∫ L x 2 1 + d 2 y d 2 x d x = ∫ 0 1 x 1 + 4 x 2 d x \int _L \sqrt{y }ds = \int_L \sqrt{x^2} \sqrt{1+\frac{d^2y}{d^2x}}dx=\int_0^1 x \sqrt{1+4x^2}dx ∫Lyds=∫Lx21+d2xd2ydx=∫01x1+4x2dx
第一类曲线积分可以看做对曲线的线密度的积分,第二类曲线积分,可以看作对坐标轴的单重积分。
第一类曲面积分可以看做对三维空间的面密度的积分,第二类曲面积分,可以看作对坐标平面的一般二重积分或者流量积分。