【分布族谱】均匀分布和三角形分布的关系

均匀分布和三角分布

均匀分布是最容易理解的连续随机分布,实际上就是等概率的连续分布,其PDF为

f ( x ) = 1 b − a , x ∈ ( a , b ) f(x)=\frac{1}{b-a}, x\in (a,b) f(x)=ba1,x(a,b)

其样本在 ( a , b ) (a,b) (a,b)区间内,差不多构成了一个矩形,故称矩形分布。

相应地,PDF为三角形的分布,就是三角形分布。对于下限为 a a a,上限为 b b b,众数为 c c c的三角分布,其PDF为

f ( x ) = { 2 ( x − a ) ( b − a ) ( c − a ) a ⩽ x ⩽ c 2 ( b − x ) ( b − a ) ( b − c ) c < x ⩽ b f(x)=\left\{\begin{aligned} \frac{2(x-a)}{(b-a)(c-a)}\quad a\leqslant x\leqslant c\\ \frac{2(b-x)}{(b-a)(b-c)}\quad c<x\leqslant b \end{aligned}\right. f(x)= (ba)(ca)2(xa)axc(ba)(bc)2(bx)c<xb

scipy.stats中,uniform为均匀分布类;triang为三角分布类。uniform的输入参数为左端点和长度;triang和均匀分布相比,多了一个众数位置,取值范围在 [ 0 , 1 ] [0,1] [0,1]之间,如下所示。

from scipy.stats import uniform, triang

fig = plt.figure()
ax = fig.add_subplot(121)
ax.hist(uniform(1,5).rvs(10000), bins=50)
ax = fig.add_subplot(122)
ax.hist(triang(0.5, 1, 5).rvs(10000), bins=50)
plt.show()

结果为

在这里插入图片描述

均匀分布相加

两个均匀分布的随机变量 X 1 , X 2 X_1, X_2 X1,X2,其中样本相加或者相减后可得到三角形分布,记X1的下限与上限为 a 1 , b 1 a_1,b_1 a1,b1,X2的下限与上限分别为 a 2 , b 2 a_2,b_2 a2,b2,从这个三角形分布的特点可以看出,三角形分布的下限和上限分别是 a 1 + a 2 , b 1 + b 2 a_1+a_2, b_1+b_2 a1+a2,b1+b2,其众数为 a 1 + b 1 + a 2 + b 2 2 \frac{a_1+b_1+a_2+b_2}{2} 2a1+b1+a2+b2

a1, d1 = 1,5
a2, d2 = 3,6
x1 = uniform(a1,d1).rvs(10000)
x2 = uniform(a2,d2).rvs(10000)
plt.hist(x1+x2, density=True, bins=100)


st = a1+a2
D = d1 + d2
rv = triang(0.5, st, D)
xs = np.linspace(st, st+D, 200)
plt.plot(xs, rv.pdf(xs))

plt.show()

结果为

在这里插入图片描述

对数均匀分布

scipy.stats中还提供了loguniform的分布类,其概率密度函数为

f ( x , a , b ) = 1 x log ⁡ ( a b ) f(x,a,b)=\frac{1}{x\log(\frac{a}{b})} f(x,a,b)=xlog(ba)1

可想而知,其概率密度曲线是一个反函数。如果对随机变量取对数,则可以转化为在区间 [ log ⁡ a , log ⁡ b a ] [\log a, \log\frac{b}{a}] [loga,logab]的均匀分布,接下来测试一下

import numpy as np
from scipy.stats import loguniform
import matplotlib.pyplot as plt

a, b = 1, 5

rs = loguniform(a,b).rvs(10000)
plt.hist(np.log10(rs), density=True, bins=100)

rv = uniform(np.log10(a), np.log10(b/a/a))
xs = np.linspace(rv.ppf(0.01), rv.ppf(0.99), 100)
plt.plot(xs, rv.pdf(xs))
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值