两个均匀分布差的绝对值是一个三角分布

UTF8gbsn

假如 x , y ∼ U ( 0 , 1 ) x,y\sim U(0,1) x,yU(0,1), 也就是说 x , y x,y x,y都是 ( 0 , 1 ) (0,1) (0,1)上的均匀分布.
问题是: z = ∣ x − y ∣ z=|x-y| z=xy是什么分布?

采样并列图表

import numpy as np
import matplotlib.pyplot as plt

N = 500000

data = []
for k in range(N):
    x1 = np.random.rand()
    x2 = np.random.rand()
    d = np.abs(x1-x2)
    data.append(d)

n, bins, patches = plt.hist(data, 50)

plt.title('Histogram some')
plt.grid(True)
plt.show()

在这里插入图片描述

可见这 z = ∣ x − y ∣ z=|x-y| z=xy的分布是一个三角形分布.

分析

通过上面的分析, 我们可以确定 z = ∣ x − y ∣ z=|x-y| z=xy的概率密度函数为 p ( z ) = { 2 ( 1 − z ) , z ∈ ( 0 , 1 ) 0 , ( o t h e r w i s e ) p(z)=\left\{ \begin{aligned} 2(1-z), z\in (0,1)\\ 0, \quad (otherwise) \end{aligned} \right. p(z)={2(1z),z(0,1)0,(otherwise)

但是如何分析得到这个概率密度函数呢? 我的方法是画出 z = ∣ x − y ∣ z=|x-y| z=xy的函数图像.

在这里插入图片描述

注意上面的图像是个3D图像. 那么我们如何计算概率密度? 首先计算,
图像表面积是多少. ∫ 0 1 2 2 ( 1 − z ) d z = 2 \int_{0}^{1}{2\sqrt{2}(1-z)dz}=\sqrt{2} 0122 (1z)dz=2

高度为z的点构成两条直线, 这两条直线的长度为 2 2 ( 1 − z ) 2\sqrt{2}(1-z) 22 (1z),
有此可见,点 z z z处的概率密度为 2 2 ( 1 − z ) / 2 = 2 ( 1 − z ) 2\sqrt{2}(1-z)/\sqrt{2}=2(1-z) 22 (1z)/2 =2(1z).
于是原式得证. 这里其实就是要除以一个表面积的总和而已.
加粗样式

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值