一般图最大匹配的匈牙利算法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/m0_37846371/article/details/76473939

思想:和二分图的匈牙利算法思想一样点击打开链接


代码:(邻接表实现)

int V;//顶点数
vector<int> G[max_v];//图的邻接表表示
int match[max_v];//所匹配的顶点
bool used[max_v];//DFS中用到的访问标记

//向图中增加一条连接u和v的边
void add_edge(int u,int v)
{
         G[u].push_back[v];
         G[v].push_back[u];
}

//通过DFS寻找增广路
bool dfs(int v)
{
         used[v]=true;
         for(int i=0;i<G[v].size();i++)
         {
                   int u=G[v][i],w=match[u];
                   if(w<0||!used[w]&&dfs(w))
                   {
                              match[v]=u;
                              match[u]=v;
                              return true;
                    }
          }
          return false;
}

//求解二分图的最大匹配
int bipartite_matching()
{
         int res=0;
         memset(match,-1,sizeof(match));
         for(int v=0;v<V;v++)
         {
                  if(match[v]<0)
                  {
                            memset(used,0,sizeof(used));
                            if(dfs(v))
                            {
                                       res++;
                             }
                   }
         }
         return res;
}
阅读更多
换一批

没有更多推荐了,返回首页