【姿态识别】Convolutional Pose Machines—亮点总结与学习

1.利用每个关键点的响应图(即平面上的点的数值满足正态分布,可以画出三维高斯图)来表达各个部位的空间约束,相当于把点的回归转化成面的回归,减少误差。同时论文中把中心点的响应也作为网络的输入,用来做中心约束。

2.由于论文中提出的网络是分阶段的,因此在训练的时候,如果只用最后一阶段的的输出和label计算loss会使得梯度回传到上一阶段出现梯度弥散的现象,因此论文中提出中继监督优化,即在每一阶段的输出都计算loss,这样有效防止了梯度弥散

3.论文中有效的利用了多尺度,即把原始图像处理成多尺度的,然后输入到同一个网络,这样每一个尺度的图像都输出关键点对应的响应,然后把这些不同尺度的每个关键点对应的响应加在一起得到最终的响应图。而最终的关键点是在响应图中找最大值对应的x,y下标得到的,这样可以提高精度,修正误差。

4.论文中的网络结构分别提取了纹理特征(即浅层特征,靠前的网络输出的feature map,卷积视野小)也提取了空间特征(即深层特征,靠后的网络输出的feature map,卷积视野大),最后把这些特征concat起来,可以看出,这样就充分的利用了网络所提取的特征,提高了检测的效果。除此之外,论文中其实还concat了一个中心点的响应图,起到中心约束的作用。

 

开了一个技术交流的公众号,里面记录一些在学习有关深度学习,推荐系统与机器学习过程中的笔记与心得,欢迎关注~

                                                                      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值