在 OpenAI 最新活动“2024-12D”中,公司宣布扩展其“Reinforcement Fine-Tuning”(RFT,强化微调)研究计划,旨在帮助开发者创建定制化专家模型,以优化其在复杂领域任务中的表现。这一计划让 RFT 技术成为关注焦点,但也引发了一个问题:RFT 是否只是 RLHF(Reinforcement Learning with Human Feedback)的新变种?二者的差异是什么?
本文将深入解析 RLHF 和 RFT 的核心理念,展示二者的流程图,并通过代码示例展示其实际应用,帮助读者理解这两种技术的特点和适用场景。
RLHF(基于人类反馈的强化学习)
RLHF 是一种结合人类反馈和强化学习的技术,广泛用于通用语言模型的优化,例如 ChatGPT 的训练。它通过人类评分引导模型改进,重点提升模型的生成质量、连贯性和用户满意度。
RLHF 的主要流程
- 监督学习预训练:使用大量文本数据对模型进行初步训练。
- 人类反馈收集:对模型生成的输出进行评分。
- 奖励模型训练:使用评分数据训练一个奖励模型,用以评估模型输出。
- 强化学习优化:结合奖励信号,使用强化学习算法(如 PPO)优化主模型。
特点
- 适用于优化用户交互体验的通用语言模型。
- 数据需求大,需要大量人类评分作为训练依据。
RFT(强化微调)
RFT 是一种更注重领域任务优化的模型微调技术,通过高质量的任务数据和参考答案,强化模型在特定任务中的表现。它在减少对人类评分依赖的同时,提高了定制化效率。
RFT 的主要流程
- 任务定义和数据收集:构建特定任务的数据集,包括输入问题和参考答案。
- 模型初步训练:使用任务数据对模型进行初步训练。
- 参考答案对比评分:根据输出与参考答案的匹配程度生成评分。
- 强化学习优化:结合评分信号,对模型进行优化。
特点
- 适用于需要高精度、特定领域表现的专家模型。
- 减少对人类评分的依赖,数据需求相对较少。
RLHF 与 RFT 的差异
特点 | RLHF | RFT |
---|---|---|
目标 | 提升模型整体用户体验 | 优化模型在特定任务中的表现 |
反馈来源 | 人类评分 | 高质量任务数据和参考答案 |
应用场景 | 通用语言模型的生成质量优化 | 专家模型的定制化 |
流程复杂性 | 涉及奖励模型和强化学习算法 | 更直接,基于任务数据优化模型 |
RLHF 与 RFT 的代码实现对比(基于 tf.js)
以下示例展示 RLHF 和 RFT 在实际任务中的实现,使用 tf.js
模拟模型对文本任务的处理和微调。
RLHF 的实现示例
import * as tf from '@tensorflow/tfjs';
// 假设已有预训练模型
const model = tf.sequential({
layers: [
tf.layers.dense({ units: 128, activation: 'relu', inputShape: [20] }),
tf.layers.dense({ units: 2, activation: 'softmax' }),
],
});
// 假设有问题分类任务的反馈数据
const feedbackData = [
{ input: "地球是平的吗?", feedback: 1 }, // 用户认为模型输出不准确
{ input: "向小白简述量子物理学.", feedback: 5 }, // 用户认为模型输出合理
];
// 数据预处理
function preprocessData(data, tokenizer) {
return data.map(({ input, feedback }) => {
const encodedInput = tokenizer.encode(input); // 文本编码
const label = feedback / 5; // 评分归一化
return { xs: tf.tensor2d(encodedInput), ys: tf.tensor2d([[label]]) };
});
}
// 模拟强化学习优化
function rlOptimize(data) {
const processedData = preprocessData(data, { encode: text => Array(20).fill(0.1) }); // 简化编码
processedData.forEach(({ xs, ys }) => {
model.fit(xs, ys, { epochs: 10 }).then(() => {
console.log('强化学习阶段完成');
});
});
}
// 执行优化
rlOptimize(feedbackData);
RFT 的实现示例
import * as tf from '@tensorflow/tfjs';
// 假设已有预训练模型
const model = tf.sequential({
layers: [
tf.layers.dense({ units: 128, activation: 'relu', inputShape: [20] }),
tf.layers.dense({ units: 2, activation: 'softmax' }),
],
});
// 定义分类任务数据
const taskData = [
{ input: "湖南的省份是哪里?", output: [1, 0] }, // 正确答案是分类 "地理"
{ input: "三体是谁写的?", output: [0, 1] }, // 正确答案是分类 "文学"
];
// 数据预处理
function preprocessTaskData(data, tokenizer) {
return data.map(({ input, output }) => {
const encodedInput = tokenizer.encode(input); // 文本编码
return { xs: tf.tensor2d(encodedInput), ys: tf.tensor2d([output]) };
});
}
// 强化微调
function rftOptimize(data) {
const processedData = preprocessTaskData(data, { encode: text => Array(20).fill(0.2) }); // 简化编码
processedData.forEach(({ xs, ys }) => {
model.fit(xs, ys, { epochs: 10 }).then(() => {
console.log('强化微调完成');
});
});
}
// 执行微调
rftOptimize(taskData);
代码对比分析
方面 | RLHF 示例 | RFT 示例 |
---|---|---|
输入数据 | 人类反馈生成的奖励信号 | 任务输入和参考答案 |
优化目标 | 提升奖励信号 | 减少任务和参考答案的误差 |
数据需求 | 需收集人类反馈数据 | 需构建高质量任务和答案集 |
实现复杂性 | 涉及评分和奖励模型的强化学习 | 更直接的任务数据微调 |
总结与展望
RLHF 和 RFT 是两种互补的技术,各有适用场景。RLHF 适合通用语言模型的全局优化,而 RFT 更适用于复杂领域任务的定制化。在开发实际应用时,应根据目标选择适当的方法。
随着 OpenAI 推广 RFT 技术,它将帮助开发者更高效地实现模型的领域定制。如果你从事 AI 开发,不妨尝试基于 RFT 构建适合特定场景的专家模型,进一步推动技术应用的边界!