二维卷积可加性 ACNet模块 PyTorch验证

  • 来自ACNet[1]
    在这里插入图片描述

  • 上代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

a = torch.ones((1, 1, 10, 10))

kernel_V = np.array([[1, 0, 0],
          [1, 0, 0],
          [1, 0, 0]])

kernel_H = np.array([[1, 1, 1],
          [0, 0, 0],
          [0, 0, 0]])

kernel_Full = np.array([[1, 1, 1],
              [1, 1, 1],
              [1, 1, 1]])

kernel_Sum = kernel_V + kernel_H + kernel_Full

def ConvFunc(inputImg, kernel):
    kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
    weight = nn.Parameter(data=kernel, requires_grad=False)

    return F.conv2d(inputImg, weight)


print(a)

print("H: \n", ConvFunc(a , kernel_H))
print("V: \n", ConvFunc(a , kernel_V))
print("Full: \n", ConvFunc(a , kernel_Full))


print(kernel_Sum)
print("Sum :\n", ConvFunc(a, kernel_Sum))

  • 运行结果
tensor([[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]]])
H: 
 tensor([[[[3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.]]]])
V: 
 tensor([[[[3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.],
          [3., 3., 3., 3., 3., 3., 3., 3.]]]])
Full: 
 tensor([[[[9., 9., 9., 9., 9., 9., 9., 9.],
          [9., 9., 9., 9., 9., 9., 9., 9.],
          [9., 9., 9., 9., 9., 9., 9., 9.],
          [9., 9., 9., 9., 9., 9., 9., 9.],
          [9., 9., 9., 9., 9., 9., 9., 9.],
          [9., 9., 9., 9., 9., 9., 9., 9.],
          [9., 9., 9., 9., 9., 9., 9., 9.],
          [9., 9., 9., 9., 9., 9., 9., 9.]]]])
[[3 2 2]
 [2 1 1]
 [2 1 1]]
Sum :
 tensor([[[[15., 15., 15., 15., 15., 15., 15., 15.],
          [15., 15., 15., 15., 15., 15., 15., 15.],
          [15., 15., 15., 15., 15., 15., 15., 15.],
          [15., 15., 15., 15., 15., 15., 15., 15.],
          [15., 15., 15., 15., 15., 15., 15., 15.],
          [15., 15., 15., 15., 15., 15., 15., 15.],
          [15., 15., 15., 15., 15., 15., 15., 15.],
          [15., 15., 15., 15., 15., 15., 15., 15.]]]])
  • 以上用一个超级学渣的方式将二维卷积可加性得到验证…
  • PyTorch implement
Reference

[1] PDF 原文
[2] https://zhuanlan.zhihu.com/p/93966695

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值