永磁同步电机无速度算法--基于同步坐标系的滑模观测器SMO

传统基于两相静止坐标系下的滑模转子位置观测器依靠观测拓展反电动势,而拓展反电动势最大值与iq及q轴电流的微分值iq等其他参数相关,可见在两相静止坐标系下对内置式永磁同步电机设计滑模观测器时,观测器中开关增益参数K的选取比较复杂,选取不当,将不能满足李雅普诺夫稳定性条件,进而使得电流误差动态方程不能渐进稳定。

同时扩展反电动势的幅值会受到永磁电动机负载变化的影响,尤其像船舶螺旋桨这类重型负载工况下,推进电机负载突变时,会造成电机电流有较大变化,而电流的微分值将会变得更大,从而造成较大的扩展反电动势误差值,最终影响推进电机角度估算的准确度。为了避免对内置式永磁推进电动机扩展反电动势的观测,本文在两相旋转坐标系下对内置式永磁推进电动机滑模观测器进行了设计

一、原理介绍

根据永磁同步电机(PMSM)旋转坐标系下数学模型,可得定子电流方程为:

式中,Ed=0、Eq=we*Ψf分别为dq轴下的感应电动势;Ψf为永磁体磁链

为了获得感应电动势的值,可将式(1)改写为:

其中

对上两式作差,可得到电流误差系统状态方程为:

将电流误差系统状态方程写成向量形式为:

利用滑模观测器对电流进行估计,滑模面函数定义为:

因此可得

采用锁相环 PLL技术能实时跟踪转子位置和信息。

二、仿真模型

在MATLAB/simulink(软件版本为2024A)里面验证所提算法,搭建仿真。采用和实验中一致的控制周期1e-4,电机部分计算周期为1e-6。仿真模型如下所示:

仿真工况:电机空载零速启动,0s阶跃给定转速1000rpm,0.5s施加额定负载

2.1给定转速、实际转速和估计转速

在到达额定转速后,可以看出,估计转速较为准确的跟踪实际转速,电机运行比较平稳。

2.2估计转速与实际转速误差

2.3估计转角与实际转角

2.4估计转角与实际转角误差

2.5电磁转矩

2.6三相电流

总结:基于同步坐标系的滑模观测器能及时快速跟踪电机的实际转速和转角变化。对比传统滑模观测器, 该控制方法控制准确高、 动态性能好、鲁棒性强,能满足电机实际控制性能要求

### 基于李雅普诺夫理论的滑模观测器的设计与实现 #### 滑模观测器简介 滑模控制是一种非线性控制方法,其核心在于通过引入特定的切换面使得系统的状态轨迹能够在有限时间内达到并保持在这个面上运动。然而,在实际应用中,传统的基于Sigmoid函数的滑模观测器由于高频信号切换特性容易引起较大的抖振现象[^1]。 为了克服上述缺点,有研究提出了采用分段指数型函数来替代原有的开关函数构建新型滑模观测器方案。这种改进不仅有效降低了系统运行过程中的抖动程度,而且提高了整体性能表现以及增强了系统的鲁棒性和抗干扰能力。 #### 李雅普诺夫稳定性分析的应用 对于任何类型的控制器来说,确保其能够使被控对象趋于期望的状态是非常重要的;而对于滑模观测器而言,则更关注的是能否让估计误差逐渐减小直至趋近零。这就涉及到如何判断一个给定的动力学方程组在其平衡点附近是否具有渐进稳定的性质——这正是李雅普诺夫第二法所能解决的问题所在[^2]。 具体到本案例当中,即是要找到合适的能量函数V(x),并通过求导得到dV/dt≤0的形式从而证明当时间趋向无穷大时所有初始条件下的解都将收敛至原点处(即实现了全局一致最终边界的定义)。 #### 控制系统设计实例展示 考虑如下离散时间动态模型: \[ x(k+1)=Ax(k)+Bu(k), \] 其中\(A\in R^{n\times n}\)表示状态转移矩阵,\(B\in R^{n\times m}\)代表输入影响系数向量。\(\hat{x}(k)\)为当前时刻的状态预测值;\(e(k)=x-\hat{x}\)则用来衡量两者之间的偏差大小。 假设已知真实的受控对象参数以及噪声统计特征的前提下,可以按照以下方式构造相应的滑膜面s: \[ s=C[x(k)-\hat{x}(k)] \] 这里C是一个适当选取的比例因子阵列。接着根据前面提到的方法论选择恰当形式的速度项v(s),进而形成完整的更新法则: ```matlab function dx_hat = update_rule(A,B,C,x,u,dx_hat_last) % 计算滑膜变量 e = x - dx_hat_last; s = C * e; % 定义速度项 v(s) if abs(s)<delta vs=alpha*s; % 连续区域内的线性部分 else vs=-sign(s)*beta*exp(-gamma*abs(s));% 非连续区域内平滑处理后的指数衰减成分 end % 更新状态估值 dx_hat=A*dx_hat_last+B*u+C'*vs; end ``` 在此基础上再借助MATLAB/Simulink平台完成整个闭环回路搭建工作,并分别测试不同形态下u的选择会对最终效果造成怎样的差异变化趋势[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值