《Deep Retinex Network for Single Image Dehazing》论文阅读

《Deep Retinex Network for Single Image Dehazing》论文阅读

摘要

本文提出了一个基于Retinex算法的分解模型和一个端对端的神经网络,用于图像去模糊。使用该模型,将模糊图像分解成无雾霾的图像和有雾霾的残余图像。

基于原先的模型,本文设计了一个网络RDN(retinex dense network)去预测残留有雾图像无雾图像。RDN由多尺度的残差密集块通道和空间注意力(CBAM)机制的U-Net组成,多尺度残差密集快用于预测残留的模糊图像,U-Net用于对图像进行去雾

残差密集块可以提取深层和表层的特征信息,提高网络的感受野,增强图像的特征提取能力。在U-Net中加入了CBAM,运用了注意力机制领域的知识。

decomposition n.分解

hazy adj.模糊的;有薄雾的

illumination n.照明;阐明;解释清楚

dehazing adj.去雾的

前言

传统的图像去雾方法:

  • 基于先验的方法
  • 基于retinex的方法
  • 基于学习的方法

基于先验的方法

早期的先验方法
  • 暗通道先验
  • 颜色衰减先验
  • 雾霾线先验
  • 照明局部光滑

基于先验的方法有局限性,因为先验并不是总能满足模糊的图像。

基于retinex的方法

基于retinex的图像去模糊方法通常使用与模糊图像卷积的周围函数来估计清楚的图像。

引出

这些方法的局限性是需要人工选择周围的函数及其规模。近年来,由于深度卷积神经网络具有强大的特征表示和端到端非线性映射能力,许多基于深度学习的模糊去除方法被提出,克服了特定的基于先验的方法的局限性。

完全基于数据驱动的深度神经网络有GAN,GridNet,EPDN等,但是此类网络在可解释性泛化性有局限。

基于融合的深度网络,如GFN、LAPNet和DM2F-Net,需要分别学习三种、四种和五种置信度图(权重),但是特征图的不平衡问题可能会导致图像过饱和或者图像有残留的雾霾。

基于散射模型的深度网络需要同时预测透射图和大气光。如果估计不准确,则对两个物理参数的非联合估计在一起应用时可能会进一步放大误差,最终恢复的图像通常会出现颜色失真残留的雾霾问题。

如下图所示使用cnn进行去雾的效果。根据上述分析,图像去雾仍然是一个具有挑战性的问题,特别是重雾的去除。

图像去雾效果

Retinex是一个简单且通用的理论,它被广泛应用于图像去模糊预处理,而其中的关键是图像的透光率。如果我们将透光率恢复到近似正常的状态,可以有效应对图像去模糊的任务。

新提出的RDD优点:

  • 相比于一般模型,有着更低的误差。
  • 相比于完全数据驱动网络,泛化能力更强且不依赖先验。
  • 具有强大的非线性拟合能力,避免选择周围函数及参数。

大概步骤:

  1. 使用残差密集网络学习局部信息全局信息
  2. 使用基于Retinex的分解模型,得到粗陋的无雾图像。
  3. 将粗陋图像放入细化去雾子网络,得到精确的去雾图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值