基于ResNet50实现多目标美味蛋糕图像分类

本文档详细介绍了如何基于ResNet50模型实现多目标美味蛋糕图像分类,包括数据集介绍、ResNet50模型的加载、自定义数据集加载、损失函数定义、训练过程以及测试。数据集包含奶油、水果、撒料三个分类标签,通过PyTorch进行深度学习训练和测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、基于ResNet50实现多目标美味蛋糕图像分类

本项目是一个使用ResNet50实现图像分类的任务,但是不同于传统分类,本项目是一个多目标分类任务,传统分类任务需要判别一张图片的单一类别,例如判别是猫或是狗,但是如果我们有一种需求就是如果一张图片中既有狗又有猫,就需要将两个类别同时判为1,本项目是判断一个蛋糕中是否同时有奶油、水果、撒料,是一个多目标分类任务。

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值