一、安装Yolov5
1、创建python3.8虚拟环境(要求python>=3.7
)
conda create -n yolov5 python=3.8
source activate yolov5
2、克隆项目
git clone https://github.com/ultralytics/yolov5 # clone repo
3、安装环境依赖
cd yolov5
pip install -U -r requirements.txt
4、测试
在yolov5文件夹里打开终端,执行:
python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube video
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
把 0 换成下面的指令就可以去检测别的,比如换成图片路径即为检测图片。
如果没有指定权重,则会自动下载默认的COCO预训练权重模型yolov5s.pt,最终检测结果会保存在./runs/detect/文件夹中。
我们还可以指定权重文件,权重文件下载链接为,将下载好的权重文件放在yolov5/weights/文件夹中,下述命令使用yolov5m.pt去检测./data/image文件夹中的所有图片和视频,并设置置信度为0.5:
python3 detect.py --source ./data/images/ --weights ./weights/yolov5m.pt --conf 0.5
二、制作自己的数据集
1、使用labelImg给图片加标签
pip3 install labelImg
labelImg
- 打开图片所在文件夹
- 修改存放目录
- 按 w 框选,添加标签
- 保存-下一张
2、扩展数据集
网站:Roboflow: Give your software the power to see objects in images and video