autoware官方文档阅读记录

在这里插入代码片@TOC

Autoware Documentation

autoware github网址:autoware github
欢迎来到Autoware文档!在这里,您将找到有关Autoware的全面信息,Autoware是开源自动驾驶软件的前沿。

关于Autoware

Autoware是全球领先的致力于自动驾驶技术的开源项目。基于机器人操作系统(ROS 2), Autoware促进了自动驾驶汽车在各种平台和应用程序上的商业部署。在Autoware基金会网站上了解更多关于我们创新项目的信息。

开始

走进Autoware的世界

发现概念:通过探索概念页面开始您的Autoware之旅。在这里,您将深入了解Autoware背后的核心理念,了解其独特的功能以及它如何在自动驾驶技术领域脱颖而出。了解指导其发展的原则和它提供的创新解决方案。

设置你的环境#

安装自动软件:一旦你掌握了自动软件的原理,是时候把它带入你的世界了。请访问我们的安装部分,了解在您的环境中无缝安装Autoware和相关工具的详细分步说明。无论您是初学者还是专家,这些页面都旨在指导您顺利完成设置过程。

深入了解

动手体验: 安装后,转到教程页面。这些教程旨在为您提供一些模拟的实践经验,使您能够应用所学知识并获得实用技能。从基本操作到高级应用程序,这些教程涵盖了广泛的主题,以增强您对Autoware的理解。

高级主题: 随着您对Autoware越来越熟悉,如何操作指南将是您的下一个目的地。这些页面深入到更高级的主题,提供更深入的见解和更复杂的场景。对于那些希望在Autoware的特定领域扩展知识和专业知识的人来说,他们是完美的。此外,本节还介绍了将Autoware与真实车辆集成的方法,为那些寻求在真实环境中应用Autoware的人提供实用指导。

理解设计

设计概念: 对于那些对Autoware的架构和设计哲学感兴趣的人来说,设计页面是一个宝库。了解架构决策、设计模式以及Autoware各种组件开发背后的基本原理。

更多信息

数据集: 数据集页面对于任何使用Autoware的人来说都是至关重要的资源。在这里,您将找到与Autoware兼容的数据集集合,提供真实世界的场景和数据,以测试和完善您的自动驾驶解决方案。

支持: 随着您深入了解Autoware,您可能会遇到挑战或遇到问题。支持部分旨在帮助您在这些时刻。该区域包括常见问题解答、社区论坛以及获取Autoware帮助的联系信息。它也是一个与其他Autoware用户和贡献者联系,分享经验和解决方案的好地方。

竞赛: 竞赛页面是兴奋与创新相遇的地方。Autoware定期主办或参与各种竞赛和挑战,为用户提供一个测试他们的技能、展示他们的工作并为社区做出贡献的平台。这些比赛范围从本地到全球,为初学者和专家提供了参与和超越的机会。随时了解即将发生的事件,并参与自动驾驶技术的发展。

贡献和协作

成为Autoware故事的一部分:您的Autoware之旅不仅仅是学习和使用;这也是关于贡献和塑造自动驾驶的未来。贡献部分不仅仅是一个指南;这是邀请你参与更大的事业。无论您是程序员、作家还是爱好者,您的贡献都可以推动Autoware向前发展。加入我们,让我们共同建设未来。

相关的文件

除了本页之外,还有一些相关文档可以帮助您进一步了解和理解Autoware:

Autoware Universe Documentation包含每个组件/功能的技术文档,如本地化、规划等。
Autoware Tools Documentation包含每个自动驾驶工具的技术文档,如性能分析、校准等。

Installation

目标平台

Autoware针对下面列出的平台。它可能会在未来版本的Autoware中更改。

除了下面列出的平台之外,Autoware基金会不提供其他平台的支持。

Architecture

  • amd64
  • arm64

Minimum hardware requirements

Autoware是可扩展的,可以定制,以与分布式或功能较弱的硬件一起工作。下面给出的最低硬件要求只是一般建议。然而,更多的内核、RAM和更高规格的显卡或GPU内核将提高性能。

虽然GPU不需要运行基本功能,但必须启用以下与神经网络相关的功能:—基于LiDAR的物体检测—基于摄像头的物体检测—红绿灯检测和分类。

  • CPU with 8 cores
  • 16GB RAM
  • [Optional] NVIDIA GPU (4GB RAM)

在不使用GPU的情况下,如何启用目标检测和红绿灯检测/分类,请参见不使用CUDA的运行自动软件。

Installing Autoware

设置Autoware有两种方法。根据你的喜好选择一个。
如果在安装过程中出现任何问题,请参阅支持页面。

1 Docker installation

Autoware的Open AD Kit容器使您能够在主机上轻松运行Autoware,确保所有部署的环境相同,而无需安装任何依赖项。Docker安装设置的完整指南。

Open AD Kit也是第一个面向自动驾驶的SOAFEE蓝图,它提供了可扩展的模块化容器,使Autoware的AD堆栈更容易在分布式系统上运行。打开AD套件设置的完整指南。

开发人员还可以使用开发人员容器,从而更容易从源代码构建Autoware,并确保所有开发人员使用相同的环境。

sudo apt update
rosdep update
rosdep install -y --from-paths src --ignore-src --rosdistro $ROS_DISTRO
colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release
CMake Error at CMakeLists.txt:5 (find_package):
  By not providing "Findcudnn_cmake_module.cmake" in CMAKE_MODULE_PATH this
  project has asked CMake to find a package configuration file provided by
  "cudnn_cmake_module", but CMake did not find one.

  Could not find a package configuration file provided by
  "cudnn_cmake_module" with any of the following names:

    cudnn_cmake_moduleConfig.cmake
    cudnn_cmake_module-config.cmake

  Add the installation prefix of "cudnn_cmake_module" to CMAKE_PREFIX_PATH or
  set "cudnn_cmake_module_DIR" to a directory containing one of the above
  files.  If "cudnn_cmake_module" provides a separate development package or
  SDK, be sure it has been installed.

./docker/run.sh --map-path path_to_map_data

./docker/run.sh --map-path path_to_map_data ros2 launch autoware_launch autoware.launch.xml map_path:=/autoware_map vehicle_model:=sample_vehicle sensor_model:=sample_sensor_kit
Open AD Kit: containerized workloads for Autoware

Open AD Kit提供了两种类型的Docker映像,让您快速开始使用Autoware: devel和runtime。

  1. 开发映像使您无需设置本地开发环境即可开发Autoware。
  2. 运行时映像仅包含运行时可执行文件,使您能够快速试用Autoware。

2 Source installation

源安装适用于需要对安装环境进行更细粒度控制的情况。建议有经验的用户或想要自定义环境的人使用它。请注意,根据您的本地环境,可能会出现一些问题。

有关更多信息,请参阅源代码安装指南。

Installing related tools

根据您想要进行的评估,还需要其他一些工具。例如,要运行端到端模拟,您需要安装适当的模拟器。欲了解更多信息,请参阅此处。

Additional settings for developers

还有一些工具和设置供开发人员使用,比如shell或ide。欲了解更多信息,请参阅此处。

TASK [autoware.dev_env.docker_engine : Authorize Docker GPG key] ******************************************************************************************************************************************
fatal: [localhost]: FAILED! => {"changed": false, "msg": "Failed to download key at https://download.docker.com/linux/ubuntu/gpg: Request failed: <urlopen error _ssl.c:990: The handshake operation timed out>"}

PLAY RECAP ************************************************************************************************************************************************************************************************
localhost                  : ok=23   changed=8    unreachable=0    failed=1    skipped=2    rescued=0    ignored=0   

Failed.

ERROR: error loading sources list:
	The read operation timed out (https://raw.githubusercontent.com/ros/rosdistro/master/noetic/distribution.yaml)

ERROR: the following packages/stacks could not have their rosdep keys resolved
to system dependencies:
pacmod_interface: Cannot locate rosdep definition for [pacmod3_msgs]

sudo apt install apt-transport-https
sudo sh -c 'echo "deb [trusted=yes] https://s3.amazonaws.com/autonomoustuff-repo/ $(lsb_release -sc) main" > /etc/apt/sources.list.d/autonomoustuff-public.list'
sudo apt update
sudo apt install ros-$ROS_DISTRO-pacmod3
MAKEFLAGS="-j1" colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release --parallel-workers 1
vcs import src < simulator.repos

source /opt/ros/humble/setup.bash
rosdep install -y --from-paths src --ignore-src --rosdistro $ROS_DISTRO

colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release

source install/setup.bash

ros2 launch scenario_test_runner scenario_test_runner.launch.py \
  architecture_type:=awf/universe \
  record:=false \
  scenario:='$(find-pkg-share scenario_test_runner)/scenario/sample.yaml' \
  sensor_model:=sample_sensor_kit \
  vehicle_model:=sample_vehicle

tar -xf ~/autoware_data/yabloc_pose_initializer/resources.tar.gz \
       -C ~/autoware_data/yabloc_pose_initializer/

tar -xf ~/autoware_data/tvm_utility/yolo_v2_tiny-x86_64-llvm-3.0.0-20221221.tar.gz \
       -C ~/autoware_data/tvm_utility/models/yolo_v2_tiny/

tar -xf ~/autoware_data/lidar_centerpoint_tvm/centerpoint_encoder-x86_64-llvm-3.0.0-20221221.tar.gz \
       -C ~/autoware_data/lidar_centerpoint_tvm/models/centerpoint_encoder
tar -xf ~/autoware_data/lidar_centerpoint_tvm/centerpoint_backbone-x86_64-llvm-3.0.0-20221221.tar.gz \
       -C ~/autoware_data/lidar_centerpoint_tvm/models/centerpoint_backbone

tar -xf ~/autoware_data/lidar_apollo_segmentation_tvm/baidu_cnn-x86_64-llvm-3.0.0-20221221.tar.gz \
       -C ~/autoware_data/lidar_apollo_segmentation_tvm/models/baidu_cnn


./docker/run.sh --map-path path_to_map_data

./docker/run.sh --map-path path_to_map_data ros2 launch autoware_launch autoware.launch.xml map_path:=/autoware_map vehicle_model:=sample_vehicle sensor_model:=sample_sensor_kit
Info
source ~/autoware/install/setup.bash

ros2 launch autoware_launch planning_simulator.launch.xml map_path:=$HOME/liangjiabao/project_study/autoware_mapsample-map-planning vehicle_model:=sample_vehicle sensor_model:=sample_sensor_kit
docker pull ghcr.io/autowarefoundation/autoware-openadk:20240308-prebuilt-cuda
not found: "/home/liangjiabao/project_study/autoware/install/tensorrt_common/share/tensorrt_common/local_setup.sh"
not found: "/home/liangjiabao/project_study/autoware/install/tensorrt_classifier/share/tensorrt_classifier/local_setup.sh"
ros2 launch scenario_test_runner scenario_test_runner.launch.py \
  architecture_type:=awf/universe \
  record:=false \
  scenario:='$(find-pkg-share scenario_test_runner)/scenario/sample.yaml' \
  sensor_model:=sample_sensor_kit \
  vehicle_model:=sample_vehicle
gdown -O ~/autoware_map/ 'https://docs.google.com/uc?export=download&id=1499_nsbUbIeturZaDj7jhUownh5fvXHd'
unzip -d ~/autoware_map ~/autoware_map/sample-map-planning.zip
rosrun tf2_tools static_transform_publisher 0 0 0 0 0 0 map world 100
import rclpy
from geometry_msgs.msg import TransformStamped
import tf2_ros

def main(args=None):
    rclpy.init(args=args)

    node = rclpy.create_node('static_transform_publisher')

    broadcaster = tf2_ros.StaticTransformBroadcaster(node)

    static_transformStamped = TransformStamped()

    static_transformStamped.header.stamp = node.get_clock().now().to_msg()
    static_transformStamped.header.frame_id = 'map'
    static_transformStamped.child_frame_id = 'world'

    static_transformStamped.transform.translation.x = 0.0
    static_transformStamped.transform.translation.y = 0.0
    static_transformStamped.transform.translation.z = 0.0

    static_transformStamped.transform.rotation.x = 0.0
    static_transformStamped.transform.rotation.y = 0.0
    static_transformStamped.transform.rotation.z = 0.0
    static_transformStamped.transform.rotation.w = 1.0

    broadcaster.sendTransform(static_transformStamped)

    rclpy.spin(node)

    node.destroy_node()
    rclpy.shutdown()

if __name__ == '__main__':
    main()

Authware古诗教程是一款专门为学习和欣赏古诗而设计的软件。它提供了丰富的古诗资源和相关的学习功能,帮助用户更好地理解和感受古代文化。 首先,Authware古诗教程拥有庞大的古诗库,涵盖了各个朝代的经典古诗。用户可以通过浏览功能,随时查阅自己喜欢的古诗,了解作者背景和作品的内涵。 其次,Authware古诗教程提供了详细的古诗解析和注释。对于初学者来说,读懂古诗可能会有一些难度,但通过软件提供的解析和注释,用户可以更好地理解古人的用词和意境,进一步欣赏古诗之美。 此外,Authware古诗教程还提供了古诗背景介绍和相关阅读材料。了解古代社会背景和文化氛围,能够更加全面地把握古诗的内涵和艺术价值。通过相关阅读材料的学习,用户可以拓展自己的知识面,提升古诗欣赏的层次。 最后,Authware古诗教程还提供了互动学习和分享社区。用户可以与其他热爱古诗的人交流学习,分享自己的感悟和见解。这种互动交流可以激发更多的灵感和思考,使学习和欣赏古诗变得更加有趣和有意义。 总之,Authware古诗教程是一款功能丰富、易于操作的软件,它可以帮助用户更好地学习和欣赏古诗,了解古代文化,并与其他人分享自己的想法。无论是初学者还是资深爱好者,都可以在这个平台上找到自己需要的资源和交流机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值