C3K2模块
C3K2模块是专属于yolov11的一种特征提取组件,基于传统 C3 模块的改进设计,通过结合可变卷积核(例如 3x3、5x5 等)和通道分离策略,提供了更强大的特征提取能力,尤其适用于更复杂的场景和深层次的特征提取任务。
由于使用了不同大小的卷积核,C3K2 在处理复杂场景时能显著提高特征提取的精度,特别是在物体边界和复杂背景中的检测能力方面。
C3K模块
C3K 模块 是 YOLO11 模型中的一个关键模块,它在传统 C3 模块的基础上进行了增强,旨在提高特征提取能力,特别是适应更复杂的任务和多尺度检测需求。相比于传统的 C3 模块,C3K 引入了更多灵活性,尤其是在卷积核设计方面。
C3K 模块允许使用不同的卷积核大小,如 3x3、5x5,甚至更大的卷积核。这使得模型能够在不同尺度上提取特征,扩展了感受野,尤其有助于捕捉更复杂的空间特征。
尽管 C3K 增加了卷积核大小,但它仍然保持了较为轻量化的设计。通过分支结构和特征拼接,C3K 模块在保持高效计算的同时,提升了模型的检测精度。
Bottleneck模块
Bottleneck 模块 是神经网络中常用的一种结构,特别是在目标检测、图像分类和分割任务中具有广泛的应用。它最初在 ResNet(残差网络) 中被引入,旨在提高网络的深度和表现能力,同时减少计算量。
通道压缩和扩展:
- 输入降维:Bottleneck 模块首先通过 1x1 卷积将输入特征图的通道数进行压缩,减少计算量。这一过程也称为 "降维"。
- 中间卷积:随后使用 3x3 或更大的卷积核进行特征提取,这是模块中的核心计算部分。此时,特征图的空间维度保持不变。
- 输出扩展:最后通过另一个 1x1 卷积将通道数扩展回原始的大小。
残差连接:
- Bottleneck 模块与残差连接(Residual Connection)结合,形成了跳跃连接(Skip Connection),使输入特征能够直接与输出进行相加。这一结构使得网络在深层次的情况下仍能有效训练,缓解了梯度消失问题。