C3K2模块 与 C3K模块

C3K2模块

C3K2模块是专属于yolov11的一种特征提取组件,基于传统 C3 模块的改进设计,通过结合可变卷积核(例如 3x3、5x5 等)和通道分离策略,提供了更强大的特征提取能力,尤其适用于更复杂的场景和深层次的特征提取任务。

由于使用了不同大小的卷积核,C3K2 在处理复杂场景时能显著提高特征提取的精度,特别是在物体边界和复杂背景中的检测能力方面。

C3K模块

C3K 模块 是 YOLO11 模型中的一个关键模块,它在传统 C3 模块的基础上进行了增强,旨在提高特征提取能力,特别是适应更复杂的任务和多尺度检测需求。相比于传统的 C3 模块,C3K 引入了更多灵活性,尤其是在卷积核设计方面。

C3K 模块允许使用不同的卷积核大小,如 3x3、5x5,甚至更大的卷积核。这使得模型能够在不同尺度上提取特征,扩展了感受野,尤其有助于捕捉更复杂的空间特征。

尽管 C3K 增加了卷积核大小,但它仍然保持了较为轻量化的设计。通过分支结构和特征拼接,C3K 模块在保持高效计算的同时,提升了模型的检测精度。

Bottleneck模块

Bottleneck 模块 是神经网络中常用的一种结构,特别是在目标检测、图像分类和分割任务中具有广泛的应用。它最初在 ResNet(残差网络) 中被引入,旨在提高网络的深度和表现能力,同时减少计算量。

通道压缩和扩展:

  • 输入降维:Bottleneck 模块首先通过 1x1 卷积将输入特征图的通道数进行压缩,减少计算量。这一过程也称为 "降维"。
  • 中间卷积:随后使用 3x3 或更大的卷积核进行特征提取,这是模块中的核心计算部分。此时,特征图的空间维度保持不变。
  • 输出扩展:最后通过另一个 1x1 卷积将通道数扩展回原始的大小。

残差连接:

  • Bottleneck 模块与残差连接(Residual Connection)结合,形成了跳跃连接(Skip Connection),使输入特征能够直接与输出进行相加。这一结构使得网络在深层次的情况下仍能有效训练,缓解了梯度消失问题。

### C3K2网络结构中的Bottleneck 在C3K2网络结构中,瓶颈(Bottleneck)模块是一个重要的组成部分。该模块旨在减少计算量的同时保持较高的表达能力。具体来说,在YOLOv7及其变体的设计中,瓶颈模块通常由一系列卷积层组成,这些卷积层负责逐步压缩和解压特征图的空间维度。 对于C3K2而言,瓶颈设计借鉴了ResNet系列的经典做法,并进行了优化: - **输入阶段**:接收来自前一层的特征映射作为输入。 - **降维处理**:首先通过1×1卷积降低通道数至原有一半甚至更低的比例,以此达到减少后续运算负担的目的[^1]。 ```python import torch.nn as nn class Bottleneck(nn.Module): expansion = 0.5 def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): super().__init__() c_ = int(c2 * e) # 中间层通道数量 self.cv1 = nn.Conv2d(c1, c_, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(c_) self.cv2 = nn.Conv2d(c_, c2, kernel_size=3, stride=1, padding=1, groups=g) self.bn2 = nn.BatchNorm2d(c2) self.act = nn.SiLU() self.add_shortcut = shortcut and c1 == c2 def forward(self, x): residual = x if self.add_shortcut else None out = self.act(self.bn1(self.cv1(x))) out = self.act(self.bn2(self.cv2(out))) if self.add_shortcut: out += residual return out ``` - **核心操作**:接着利用3×3大小的标准卷积进一步提取局部特征;此过程中可能会加入深度可分离卷积等高效机制以提升性能表现[^2]。 - **升维恢复**:最后再经由另一个1×1卷积将通道数目还原回初始状态,准备传递给下一层继续加工。 值得注意的是,为了提高效率并简化实现难度,某些版本可能省去了最后一个升维步骤,转而在其他地方做相应调整来维持整体平衡。此外,当涉及到跨尺度连接时,则会采用类似于FPN(Feature Pyramid Network)的方式来进行多级信息交互[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值